

Progress and future of neutrino-less double-beta decay search by the KamLAND-Zen experiment

Neutrino-less double-beta decay

Majorana neutrino

- Neutrino can be Majorana particle.
- Majorana neutrino is key componet of
- Tiny neutrino mass (via SeeSaw mechanism) Matter dominant universe (via Leptogenesis)

Neutrino-less double-beta decay (0vββ)

• It happens only if v is Majorana particle. **Proof of Majorana neutrino**

KamLAND-Zen experiment

<u>Zero-n</u>eutrino double-beta decay search with <u>KamLAND</u> detector

Advantage of using the KamLAND detector

• Ultra-low radioactive environment -U, Th $\leq 10^{-17}$ g/g

• Huge & scalable – 1kt liquid scintillator

 \rightarrow Ideal environmet for extremely rare decay search !!

Double-beta decay source : ¹³⁶Xe

below ²⁰⁸Tl y BG fewer 2vββ BG

- 0vββ Q-value : 2.46 MeV
- Long $2\nu\beta\beta$ half life
- ¹³⁶Xe is enriched to ~90%

65

- (**Relatively**) easy to enrich/purify by distillation
- Dissolved into liquid scintillator (LS) at 3% stable in room temperature and pressure

Mini-balloon installed to support xenon-loaded LS (XeLS)

- Experiment: peak search around the Q-value
- Requirements: large exposure, background reduction

KamLAND is a suitable detector

Near future

KamLAND2-Zen

energy resolution

Detector upgrade for better

• ~1 ton of enriched xenon

Toward $\langle m_{\beta\beta} \rangle = 20 \text{ meV}$!!

- Outer LS provides passive shielding from external radioactive background.
- Concentrated target nuclei can suppress volumeproportional backgrounds.

History and future of KamLAND-Zen

Present: 2019 – Done!!

KamLAND-Zen 400

- Mini-balloon radius = 1.54 m
- 320–380 kg of enriched xenon
- $\langle m_{\beta\beta} \rangle < 61 \text{--} 165 \text{ meV}$

Phys. Rev. Lett. 117, 082503 (2016)

Cleaner mini-ballon, more xenon for better sensitivity

Backgrounds of 0vββ signal

---- ¹³⁶Xe $0\nu\beta\beta$ (90% C.L. U.L.)

(a) Singles Data — Total

Double-beta decay of ¹³⁶Xe (2
uetaetaeta)

Result from KamLAND-Zen 800 (Phys. B. V. Lett. 130, 051801

Zen 800

 $\Delta \chi^2$ map of $0\nu\beta\beta$ rate and L.L. rate in ROI

was re-analyzed with the new strategy. ts were combined in $\Delta \chi^2$ map.

0% C.L.):

>Zen800 : 2.0 × 10²⁶ years \rightarrow Combined : 2.3 × 10²⁶ years \rightarrow 2x better half-life limit !!

This analysis gave the most precise measurement of Xe spallation.

Limit on v mass

• Combined $(T_{1/2}^{0\nu})^{-1}$ lower limit (**2.3** × **10**²⁶ years) is translated to

< 36 - 156 meV $\langle m_{\beta\beta} \rangle$ with different NMEs. Phys. Rev. Lett. 130, 051801 (2023)

Toward further sensitivity

What we can do for 2vββ background reduction?

- Separation by observed energy is the only way.
- Energy resolution is definitive.

Detector upgrade plan

• Light yield increase by

 \rightarrow High light-yield scintillator (x1.4)

- Light-correcting Winston cone on PMTs (x1.8)
- \geq High quantum efficiency PMT (x1.9)

KamLAND2 prototype

50 m³ tank was built for benchmark of t-yield increase.

Tank inside view

14 PMTs were installed with Winston cones. he tank is filled with ter water.

LS-filled Acrylic box

LAB LS is filled into 30 cm x 30 cm x 30 cm acrylic box and installed at the center.

NEUTRINO 2024, Milan

✓ 5x increased effective light yield ✓ Twice better energy resolution@Q-value \checkmark 2v $\beta\beta$ background reduction by order of 2.

• State-of-the-art read-out electronics: MoGURA2 ► RFSoC powered data acquisition Huge buffer for SN-burst detection

> ✓~100% spallation neutron detection ✓ More efficient L.L. tagging

• Increased xenon: 745 kg \rightarrow 1,000 kg

 \checkmark More xenon, more exposure.

Target sensitivity

- The half-life : 2.0×10^{27} year
- $\langle m_{\beta\beta} \rangle \sim 20 \text{ meV}$ (in 10 years)

KamLAND2-Zen will be the first search to cover the inverted mass ordering region !!

crease in light yield by light collection mirror was demonstrated. The ²¹⁴Bi rejection Ex) TORAY メタルミー® Fee to mirror s

• The height has been changed for ease in installation. • Mirror top edge was replaced with <u>sheet mirror</u> to avoid deformation due to mirror-to-mirror contact.

Summary

- The KamLAND-Zen experiment has been the forefront of the 0vββ search for more than a decade.
- The upcoming phase of KamLAND-Zen, KamLAND2-Zen, will implement a lot of new technologies to increase sensitivity and aim to start in 2027 !!

419 mm

