Contribution ID: 34 Type: Poster

TINY experiment: search for 0n2b decay with Zr-96 and Nd-150

Tuesday, June 18, 2024 5:30 PM (2 hours)

The TINY (Two Isotopes for Neutrinoless double beta decaY search) experiment aims to investigate neutrinoless double beta decay (0n2b) using the 96 Zr and 150 Nd isotopes. Both of them possess the crucial advantage of very high transition energy for the 0n2b process, which would allow the experimenters to obtain a higher sensitivity to the effective Majorana mass compared to other isotope candidates. However, those isotopes are not the focus for large experiments due to the unavailability of a suitable scalable detector technology.

TINY project is focused on the development of a "source=detector" technology for these two candidates. Bolometric detectors have proven their applicability for 0n2b decay searches, utilizing various absorber compounds and isotope candidates, as was done in CUORE (TeO₂ absorber), CUPID-Mo, AMoRe (Li₂MoO₄), CUPID-0 (ZnSe). These experiments have demonstrated high energy resolution and the possibility of active particle identification with scintillating cryogenic bolometers.

Following this approach, TINY will investigate dielectric absorbers containing the isotopes of interest: 96 Zr will be embedded into ZrO₂ crystals, measured with thermal sensors, and coupled to auxiliary light detectors for active alpha particles rejection. 150 Nd will be studied with magnetic NdGaO₃ absorbers and athermal phonon sensors. Particle identification will be achieved via pulse shape discrimination.

The successful R&D would provide technology for Zr- and Nd- -based bolometric detectors with high performance, which will be measured in the TINY pilot experiment. It will consist of a few kg scale underground demonstrator and will be able to set the best limits worldwide on the 0n2b half-lives for both 96 Zr and 150 Nd isotopes thanks to high efficiency and energy resolution.

Poster prize

No

Given name

Anastasiia

Surname

Zolotarova

First affiliation

CEA-Saclay

Second affiliation

Institutional email

anastasiia.zolotarova@cea.fr

Gender

Female

Collaboration (if any)

TINY

Primary author: ZOLOTAROVA, Anastasiia (CEA-Saclay)

Presenter: ZOLOTAROVA, Anastasiia (CEA-Saclay)

 $\textbf{Session Classification:} \ \ \text{Poster session and reception 1}$

Track Classification: Neutrinoless Double Beta Decay