

The TINY experiment: search for 0v2ß decay with Nd and Zr bolometers

A. Zolotarova on behalf of the TINY collaboration anastasiia.zolotarova@cea.fr

Investigating neutrino nature with neutrinoless double beta decay

Neutrinoless double beta decay $(0v2\beta)$:

• If observed, neutrino is a Majorana particle ($v \equiv v$) $0\nu 2\beta$ $2\nu 2\beta$ Lepton number violation gives clues on leptogenesis (matter-antimatter asymmetry)

Bolometers for 0v2ß searches

The isotope of interest is embedded in a crystal → **High detection efficiency**

High energy resolution: 5-10 keV (~0.2%) FWHM in the ROI

0.1-1 kg typical crystal mass: scalability to large masses is possible through arrays

Flexible composition: dielectric crystals with low heat

erc

rfu

Absolute neutrino mass scale determination and information on mass hierarchy

Experimental challenge:

- Very rare decay: $T_{1/2} (0v2\beta) > 10^{26} yr$
- Few isotopes are suitable for experiments
- Extremely low levels of background are required

capacity

Particle discrimination using scintillation light or pulseshape for a rejection

Experimental signature: narrow peak in ROI

TINY detector technology

TINY demonstrator: perspectives

Two Isotopes for Neutrinoless double beta decaY search **exploratory project** to largely impact experimental $0v2\beta$ searches - cryogenic detectors with ¹⁵⁰Nd and ⁹⁶Zr: zero-background and "detector=source" concept

Both ⁹⁶Zr and ¹⁵⁰Nd have the crucial advantage of very high **transition energy** -> higher sensitivity to the effective Majorana mass

Zr-containing detectors:

- Crystal compound: ZrO_2 (75% Zr)
- Scintillating bolometers as a baseline
- Thermal sensors (Neutron Transmutation Doped thermistors) - robust and reproducible
- Target energy resolution: <10 keV FWHM at Q_{ββ}
- Target a discrimination by light: >99.9%

Nd-containing detectors:

- Crystal compound: NdGaO₃(55%)
- Proof-of-concept: measurement of

TINY underground installation:

- $5 \times 400 \text{ g } \text{ZrO}_2 \text{ double read-out}$ scintillating bolometers
- 5×400 g natural NdGaO₃ single read-out magnetic bolometers

Precision measurement of $2\nu 2\beta$ spectrums: nuclear spectroscopy, NME calculations, information on axial-vector coupling constant

New limits in 1 year of measurements and background 10-3 cnts/keV/kg/yr for both isotopes even in abcence of enrichment:

0.05

Isotope	NEMO-3		TINY	
	Exposure, kg×yr	Present limits, yr	Planned exposure,	Projected limits, yr
			kg×yr	
⁹⁶ Zr	0.031	9.2×10^{21}	0.042	6×10 ²²
¹⁵⁰ Nd	0.191	2×10^{22}	0.062	5.7×10 ²²

Zr enrichment with gas centrifugation was initaly considered, but impacted by the Russian invastion in Ukraine. Alternative possibilities for isotope production are under investigation.

ight detecto

ZrO₂ crystal

absorber

NTD sensors

magnetic compounds with athermal sensors

T in NbS

Phonon

- Use large surface athermal phonon sensors
- Target energy resolution: <20 keV FWHM at $Q_{\beta\beta}$
- Particle discrimination by the pulse-shape

R&D planning:

- Dedicated cryogenic facility (shallow site) in CEA-Saclay, France to be installed in 2025
- **Collaboration with C2N and IJCLab for production of** athermal phonon sensors
- Tests will include search for best alternatives for crystal compounds/crystal growth methods

Application of TINY 0.045 technology on the 0.04 large scale: 0.035 Inverted ordering 0.03 Significant 0.025 improvement 0.02 in sensitivity with Next ton-scale generation sensitivty (CUPID, LEGEND) 0.015 the same volume 0.01 thanks to high $Q_{\beta\beta}$ TINY ton-scale generation sensitivity 0.005 Normal ordeing 10^{-4} 10^{-3} Lightest v mass (eV) The full TINY technology could be used for future generations of double beta decay experiments