Calibrating DUNE – The Largest LArTPC Ever To Be Built

Nuno Barros, on behalf of the DUNE Collaboration

XXXI International Conference on Neutrino Physics and Astrophysics

1. The DUNE Experiment

DUNE is a long-baseline neutrino oscillation experiment with a > 2 MW beam produced at Fermilab (Illinois, USA), characterised with a near detector complex and measured with liquid argon time projection chambers (LArTPC) at SURF (South Dakota, USA) 1.5 km underground.

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia DEEP UNDERGROUND NEUTRINO EXPERIMENT

2. Calibrating DUNE

Multiple calibration systems are planned targeting both MeV-scale neutrino astrophysics (Supernova, solar) and GeV-scale oscillation signals

 Ionization Laser system and several source-based (e.g. neutrons, Bismuth-207) calibration systems are being planned

Why a Laser Calibration

- Independent fine-grained measurement of drift velocity, charge collection efficiency, electron lifetime and electric field
- Diagnose tilts/shifts of anode and cathode

Two, 770-ton prototypes are currently installed at CERN, ProtoDUNE Horizontal Drift (PD-HD) and Vertical Drift (PD-VD), as testbeds for fullscale DUNE technologies.

Top-level calibration requirements for physics:

MeV-scale low-energy physics e.g. supernovae,

• GeV-scale oscillation physics:

solar: energy scale uncertainty < 5%

 energy scale uncertainty < 2% for leptons and 5% for hadrons

space-charge

3. The Ionization Laser System (IoLS)

Nd:YAG laser with second harmonic generator

One laser system, inside a laser (Nd:YAG, 266 nm) and a laser box, including an optical bench, alignment lasers, and power meter

Beam Location Systems

CIB - Calibration Interface Board

One set of custom electronics for control and monitoring (CIB)

- Interface between hardware and software
- Interface with DAQ and Slow Controls

One optical feedthrough and periscope system.

Two designs to address the challenge of injecting laser light inside the field cage:

- A field cage penetrating design with a retractable feature
- An external field cage-design with an extra rotation stage to increase the field of view

Dedicated software with ray-tracing capabilities for control and run planification

• With CIB one can perform full automated scan of cryostat

4. Installation at ProtoDUNE

Laser box with optical setup, UV laser, aligment lasers

Periscope motor controls

5. First tracks at ProtoDUNE

Laser ionization tracks <u>visible on all three planes</u> of charge readout

Laser track amongst other charged particle tracks

- Point of origin and track direction known
 - Trigger timing and motor readout
- No secondary particles
 - Ionization from three photon process

- Final commissioning ongoing
- One periscope will be installed in PD-VD
 After PD-HD run, warm instrumentation will be redeployed in PD-VD

• 2-photon absorption + a 3rd to ionize

charged particles and a laser track in PD-HD

<u>Upcoming developments</u>

- Full scan operation of IoLS at PD-HD
- Installation and operation at PD-VD

Preparation for installation at DUNE FD

 After ProtoDUNE, the system will be reviewed to implement necessary improvements

the PD-HD cryostat

