Results from the NOvA-T2K Joint Analysis <u>T2K</u>

Kathryn Sutton* (Caltech), for the NOvA and T2K Collaborations XXXI International Conference on Neutrino Physics and Astrophysics, Milan, Italy

NOvA and T2K

- Two current-generation long baseline neutrino oscillation experiments.
- Joint analysis combines 2020 datasets^{[1][2][3]} in a unified framework • with detailed likelihoods and consistent statistical treatment.

Motivation

Individual results with 2020 datasets show different best fit points in normal mass ordering, good agreement in inverted.

- NOvA and T2K have **different sensitivities to the mass** ordering and δ_{CP} that are driven by the differences in baseline.
- A joint result has the potential to lift the degeneracies and demonstrate compatibility.

Constructing the Fit

Both T2K and NOvA used their own Bayesian Markov Chain Monte ulletCarlo (MCMC) fitters. Comparisons provided rigorous validation.

Investigating Correlations

- Conducted thorough review of input models, systematic uncertainties and possible correlations
- No significant flux or detector correlations identified
- The underlying physics of neutrino interactions is the same - tests done to assess role of model and correlation choices
- Example: Fabricated parameters that bias the oscillation dip in v_{μ}/\bar{v}_{μ} appearance and are fully correlated across both experiments; incorrectly correlating systematics shows a bias

Out-of-Model Tests

Results

- Tested the robustness of the joint fit against alternate, data-driven neutrino interaction models
- Example: suppression of single pions in the final state based on MINERvA data^[4]

Prediction from

- Baseline Model

'True' FD

ND 'obs' (Minerva)

spectrum (Minerva)

No alternate model tests failed the preset threshold bias criteria

Results Cont.

Reconstructed Neutrino Energy (GeV)

Global Comparisons

References:

[1] <u>Eur. Phys. J. C 83: 782</u> (2023) [2] Phys. Rev D 106, 032004 (2022) [3] <u>arXiv:2311.07835</u> (2023)

[4] Phys. Rev. D 100, 072005 (2019) [5] <u>Phys. Rev. D 100, 053004 (2019)</u> [6] Phys. Rev. Lett. 130, 161802 (2023)

Joint analysis workshops were facilitated by DOE US-Japan & UKRI funds