Improved prediction of the T2K neutrino beam flux by estimation of hadronic secondary interactions in the cooling water of magnetic horns using measurement-based material modeling

3 +/- 2 mm

Sakiko Nishimori, Takeshi Nakadaira^A, Tetsuro Sekiguchi^A, Ken Sakashita^A, Megan Friend^A, Lukas Berns^B, Yoshikazu Nagai^C, for T2K Collaboration (Email : nishimor@post.kek.jp) **SOKENDAI**, KEK IPNS^A, Tohoku Univ.^B, Eötvös Loránd Univ.^C

Motivation

- To improve precision of the oscillation analysis, The neutrino flux uncertainty from hadron re-interactions on the cooling water (CW) of magnetic horn needs to be reduced.
- Water layer used in current simulation was determined just by looking at water behavior from a view port. \rightarrow The accuracy is \bullet not guaranteed.
- Horn cooling water behavior is investigated by making a horn-1 mock-up for improving the precision of flux uncertainty. lacksquare
- An image analysis method is developed to determine the thickness of the cooling water layer with improved precision.

1. T2K: Long-baseline neutrino experiment

Search for CP violation in the lepton sector by precision measurement \bullet of neutrino oscillations with accelerator neutrinos.

5. Developed estimation method of water layer

Definition of the reference line

Reference line (= Pipe outer

<Current water layer>

Current estimation is conservative

Improve

- Key points to improve precision
 - increase the beam power
 - reduce neutrino flux uncertainty

2. Neutrino beamline and the magnetic horn

- Three magnetic horns to focus secondary pions (horn1-3)
- 320kA pulsed current to create toroidal magnetic field (2.1T max)
- Large heat load (33kJ/pulse@1.3MW) generated by secondary particles and Joule heating
- Water cooling with sprayed water from nozzles (see right picture)

surface) is defined using the image w/o water spraying.

Water edge detection

Canny method :

- Detect and dot points at the pixel where the strong brightness changes.
- the edge \rightarrow Represented by white pixels

Determination of the thickness

The thickness of the water layer is estimated from the distance between the reference line and edges. \rightarrow Gaussian fit around the peak

6. Water layer model based on image analysis

<mark>reference line</mark>

2 4 6 8 Edge distribution (mm

Blue: middle

Green: max

reference line

10 -8 -6 -4 -2

*no fill < -5 mm

3. Effect of horn cooling water to neutrino flux

Precision of neutrino flux estimation

Neutrino flux is estimated using MC simulation.

[Reference] "T2K neutrino flux prediction" K.Abe et al, *Phys.Rev.D* 87 (2013) 1, 012001

The secondary interaction of pions with horn CW is the largest effect Simulated numu flux other than the hadron production. SK, Neutrino mode, v_{μ} T2K work in progress

0.95

- The shape of the water is modeled as a 🛓 uniform layer around the inner conductor with a thickness of 3+/-2mm
- The flux uncertainty due to horn CW is estimated to be about +/-3%. (Total uncertainty: ~ 5 %)

 \rightarrow Improved estimation based on the mock-up test is performed.

4. Mock-up test of horn cooling water

8. Conclusion and Future plans

<points>

Make mock-up with 12 nozzles Outer conductor

- Dummy inner conductor (acrylic pipe) and 12 nozzles are located on aluminum structure.
- Adjustable flow rate (2.5L/min/nozzle) with flowmeters and valves for each nozzle.
- Directed the beam downward by 3.64 3. degrees with respect to the horizontal

<Actual Horn> Flow : 2.5L/min/nozzle Pressure : 3 atmosphere

(in machine room)

E_v [GeV]

 \leftarrow A video shot from side

• The flux uncertainty due to CW was improved about twice.

Energy range	Symmetry	New distribution
0 – 2 GeV	+2.4 % / -2.5 %	+1.5 % / -1.5 %
0.4 – 0.8 GeV	+2.8 % / -2.8 %	+1.5 % / -1.6 %

- The new water distribution will be implemented in the official T2K flux prediction.
- It will improve the precision of neutrino oscillation analysis and CP violation search.

Summary

- New water layer is determined with the mock-up test and beam simulation.
- The flux uncertainty due to the water distribution of the magnetic horn is evaluated to be about twice smaller with the new water layer, which will \bullet lead to improve precision of CP violation search.