First combined tuning on transverse kinematic imbalance data with and without pion production constraints

Weijun Li, Marco Roda, Júlia Tena-Vidal (jtenavidal@tauex.tau.ac.il), Costas Andreopoulos, Xianguo Lu on behalf of GENIE Collaboration

Abstract

TKI Measurements

We present the first combined tuning, using GENIE, of four transverse kinematic imbalance (TKI) measurements of neutrino-hydrocarbon scattering, both with and without pion final states, from the T2K and MINERvA experiments. As a proof of concept, we have simultaneously tuned the initial state and final-state interaction models (SF-CFG and hA, respectively), producing a new effective model that more accurately describes the data. The work is available on arXiv: 2404.08510, and all references are the same as in the paper for consistency.

- Transverse Kinematic Imbalance (TKI) The observables, as shown in Fig.1, are sensitive to initial nuclear states and hadronic final-state interactions (FSIs).
- Survey 4 TKI data-sets: T2K 0π [18], T2K π^+ [19], MINERVA 0π [20, 21], and MINERVA π^0 [14] measurements.
- Predictions made with G24_20i_00_000 (G24-0)

Observables	No. of	Combi-	Combi-	Combi-		
	bins	${\tt Superset}$	Best-	Best-		
			AllPar	RedPar		
$T2K-0\pi$						
$\delta lpha_{ m T}$	8	\checkmark		\checkmark		
δp_{T}	8	\checkmark	\checkmark	\checkmark		
$\delta \phi_{ m T}$	8	\checkmark				
T2K- π^+						
$\delta lpha_{ m T}$	3	\checkmark		\checkmark		
$p_{ m N}$	4	\checkmark	\checkmark	\checkmark		
δp_{TT}	5	\checkmark		\checkmark		
MINERvA- 0π						
$\delta lpha_{ m T}$	12	\checkmark		\checkmark		
$p_{ m N}$	24	\checkmark	\checkmark	\checkmark		
δp_{T}	24	\checkmark	\checkmark			
$\delta \phi_{ m T}$	23	\checkmark				
$p_{ m p}$	25					
$ heta_{ m p}$	26					
δp_{Tx}	32					
δp_{Ty}	33		0			
	$\rm MINERvA-\pi^0$					
$\delta lpha_{ m T}$	9	\checkmark		\checkmark		
p_{N}	12	\checkmark	\checkmark	\checkmark		
δp_{TT}	13	✓		✓		

shown in red lines in Fig.7

- Relatively good agreement except MINERvA- π^0
- Different combinations of TKI observables tried in tuning, as shown in Table III

GENIE Model Selection

Base model: G24_20i_00_000 Table II

Simulation component	Model
Nuclear state	SF-CFG [8, 38, 39]
\mathbf{QE}	Valencia [41]
2p2h	SuSAv2 [43]
QE $\Delta S = 1$	Pais $[44]$
QE $\Delta C = 1$	Kovalenko [45]
Resonance (RES)	Berger-Sehgal [46]
Shallow/Deep inelastic	Bodek-Yang [47]
scattering (SIS/DIS)	
DIS $\Delta C = 1$	Aivazis-Tung-Olness [48]
Coherent π production	Berger-Sehgal [49]
Hadronization	AGKY [50]
FSI	INTRANIKE DA [51]

Result

- A new tune, G24_20i_06_22c (G24-c), is produced with values shown in Table V
- Achieve simultaneous good descriptions of both pion-less and pion production samples, as shown as the stacked histogram in Fig. 7
- Reduction in MINERvA π^0 crosssection mainly comes from large suppression of S_{CEX}^{π} and $S_{\lambda}^{\pi^{0}}$, as shown in Fig. 10

No interaction (69%)

Parameter	Nominal $(G24-0)$	$\texttt{RedPar}\;(\texttt{G24-c})$	AllPar(G24-t)					
SF-CFG								
$R_{ m SRC}$	0.12	0.15 ± 0.08	0.30 ± 0.05					
$E_{ m RM}^{ m C}$	0.01	0.01	0.011 ± 0.003					
hA								
$S^{\pi^{\pm}}_{\lambda}$	1.0 ± 0.2	1.0	1.11 ± 0.16					
$S^{\pi^0}_\lambda$	1.0 ± 0.2	0.22 ± 0.07	0.17 ± 0.06					
$S^{ m N}_\lambda$	1.0 ± 0.2	1.0	1.20 ± 0.12					
S_{CEX}^{π}	1.0 ± 0.5	0.26 ± 0.12	1.53 ± 0.37					
$S_{ m CEX}^{ m N}$	1.0 ± 0.4	1.43 ± 0.34	1.41 ± 0.38					
$S_{ m INEL}^{\pi}$	1.0 ± 0.4	1.0	0.67 ± 0.30					
$S_{ m INEL}^{ m N}$	1.0 ± 0.4	1.0	1.26 ± 0.48					
$S_{ m ABS}^{\pi^{\pm}}$	1.0 ± 0.2	1.0	1.59 ± 0.31					
$S^{\pi^0}_{ m ABS}$	1.0 ± 0.2	1.0	0.90 ± 0.28					
$S_{ m ABS}^{ m N}$	1.0 ± 0.2	0.25 ± 0.28	0.28 ± 0.27					
S_{PIPD}^{π}	1.0 ± 0.2	1.0	1.12 ± 0.30					
$S_{ m PIPD}^{ m N}$	1.0 ± 0.2	2.05 ± 0.48	1.27 ± 0.48					
χ^2 for combi								
untuned		231.75	161.26					
tuned		174.84	122.53					
diff		-56.91	-38.73					
	χ^2 for vald							
untuned		229.5	299.99					
tuned		214.7	263.41					
diff		-14.8	-36.58					
$\chi^2 ext{ for combi+vald}$								
untuned		461.25	461.25					
tuned		389.54	385.94					
diff		-71.71	-75.31					

No interaction (60%)

- G24-0 χ^2/N_{bin} : 14.4/9

INTRANUKE NA [51]

Methodology

 Tuning all 2 SF-CFG and 12 hA parameters, the most relevant ones are:

- R_{SRC}
- $S_{\lambda}^{\pi^0}$
- FSI scales, $S_{FSI}^{\pi/N}$, for each fate: charge exchange (CEX), inelastic (INEL), absorption (ABS) and pion production (PIPD).
- Randomly sample points in the model parameter space to run full simulations.
- Use Professor [52] to parameterize simulation output for each bin with a degree 4 polynomial.
- Apply Norm-Shape (NS) transformation prescription [53, 54] to circumvent Peelle's Pertinent Puzzle [55].
- Good reproduction of MC predictions, as shown in Fig. 4.
- Find the extremal point from a chi2 minimization between the parameterized approximation and data

Fig. 10

(b) MINERVA- $\pi^0 \pi^0$ FS

Discussion and Outlook

- G24-c seems to suggest extreme values, but the effect of the parameter change is less effective than the change in the parameter suggests.
- individual FSI fate For section, the Cross renormalization after scaling reduces the effective change for the particular fate
- Effect of $S_{\lambda}^{\pi^0}$ on the total π^0 -C scattering cross section is plotted in Fig. 13. A 48% peak magnitude increase, considerably less than $S_{\lambda}^{\pi^0} = 0.22$ seemingly suggests. π^0 FSI parameter values are calculated from charged pion data assuming isospin symmetry, so this

modification does not violate any existing agreement with hadron scattering data

- Agreement of G24-c with most of the non-TKI neutrino datasets available is unchanged after the tune, thereby demonstrating the physicality of the tune.
- In conclusion, G24-c is a valid and effective model that can be used as a starting point for an analysis and is available in the latest GENIE release.
- Include more sophisticated models, such as resonance production, in future tunes

1500

 π^0 KE (MeV)

 $p_{_{\rm N}}$ (GeV/c)

- G24-c

—G24-0

1000

