

Determination of the Absolute Neutrino Mass with Quantum Technologies

Nicola McConkey for the QTNM collaboration

Quantum Technologies for Neutrino Mass (QTNM) Goal:

Measure energy of electron emitted in β-decay of atomic tritium using Cyclotron Radiation Emission Spectroscopy (CRES)

- Absolute neutrino mass measurement with sensitivity O(10meV)
- Model independent kinematic search for sterile neutrinos

CRES Demonstrator Apparatus (CRESDA) brings together techniques from from quantum technology, atomic and molecular physics to

CRES: Measurement of the *frequency of electromagnetic radiation* generated due to an electron's *cyclotron motion* in a magnetic field

measure the differential β -spectrum of T.

Require a high intensity atomic tritium source: Create an **Atomic T source** from T_2 using molecular dissociation: a DC discharge seeded with e⁻ from tungsten filament

Cryogenic pulsed supersonic source

- beam with narrow velocity distribution
- cooled to reduce mean longitudinal velocity
- Characterised using Resonance Enhanced Multi Photon

Quantum-limited amplifiers for microwave radiation

Two options under development:

Resonant / Travelling Wave Kinetic Inductance Parametric Amplifiers: two port resonators operating as amplifiers

Based on Superconducting Low Inductance Undulatory Galvanometers (SLUG) and utilising nanobridge weak link Josephson junctions

Ionisation (REMPI)

J. Zou and S. D. Hogan, Phys. Rev. A 107 (2023)

CRES signal trapping and collection

Challenge: collecting microwave radiation of sub-fW power

- Must be fast, high efficiency, good signal to noise
- Complex trade off between field of view and gain Three options under development:

Antennas

Waveguides

Resonant cavities

Electrons can be trapped in a magnetic bottle trap while sufficient power is collected

- 1mT local minimum "no-work" trap
- Need to measure for >20us to collect enough power

arXiv:2401.03247v1

B field directly affects sensitivity to neutrino mass **Require** a uniform and well understood B field

Use Rydberg atom magnetometry and electrometry to measure B-field: T atoms in circular Rydberg states as quantum sensors

Measure Ramsey spectrum of transition between circular Rydberg states

Zou and Hogan, Phys. Rev. A 107, 062820 (2023) Frequency -

Current status and plans

• Successful demonstrations of atomic dissociation, B field measurements, patch antennas, resonant cavities, amplifier performance, and warm down-mixing

CRESDA Schematic

Cryogenic atomic tritium source

Prifysgol Abertawe

Swansea

LOU

0.75-

0.50-

Atomic beam

- Detector simulations, modelling and trigger have been developed
- CRESDA will integrate these technologies
- CRESDA0 is currently under design:
- First phase readout chain will include MW source, resonant cavity, readout by HEMT at 4K
- Next stage will include 0.65T magnetic field, magnetic trap, and electron source with quantum amplifiers cooled to mK included in the system
- First neutrino measurements with atomic tritium follow! O(eV) sensitivity

QTNM aims to demonstrate technology suitable for making the ultimate neutrino mass measurement!

