ID contributo: 474

Development of NTL light detectors for the CUPID 0v2β experiment

martedì 18 giugno 2024 17:30 (2 ore)

The next-generation experiment CUPID (Cuore Upgrade with Particle IDentification) will search for ¹⁰⁰Mo neutrinoless double beta decay (0v2 β) using enriched Li₂¹⁰⁰MoO₄ scintillating bolometers facing thin Ge cryogenic light detectors. The dual heat-light readout allows for the discrimination of the α -particles, an important background source in CUORE, CUPID's predecessor, and improves the experimental sensitivity. In addition, the Ge light detectors will be equipped with Al electrodes to amplify their signal-to-noise ratio through the so-called Neganov-Trofimov-Luke (NTL) effect. The NTL technology will be the key to reject the pileup of ¹⁰⁰Mo two neutrino double beta decay (2v2 β), a significant background to the 0v2 β search due to the relatively fast 2v2 β decay rate of 100Mo. Currently, various developments are pursued within the collaboration to obtain the best performance from these NTL light detectors and a reliable production process. In this poster, we will present the R&D efforts with the most recent obtained results, the future objectives, and how they will help to reject pileup to keep the background level within the designed level.

Poster prize

Yes

Given name

Antoine

Surname

Armatol

First affiliation

LBNL

Second affiliation

CEA - IRFU/DPhP

Institutional email

aarmatol@lbl.gov

Gender

Male

Collaboration (if any)

CUPID

Autore principale: ARMATOL, Antoine (LBNL)

Relatore: ARMATOL, Antoine (LBNL)

Classifica Sessioni: Poster session and reception 1

Classificazione della track: New technologies for neutrino physics