

Development of NTL light detectors for the CUPID 0vßß experiment

A. Armatol on behalf of the CUPID collaboration Lawrence Berkeley National Laboratory, Berkeley, CA, USA Contact: aarmatol@lbl.gov

Neutrinoless Double-Beta Decay (0vββ)

- Special case of the double-beta decay [1] (2nd order process in weak interactions) possible only if neutrino is its own antiparticle and if lepton number conservation is violated
- **Signature:** mono-energetic peak in the two electrons spectrum

$$= G(Q, Z)g_A^4 |M^{0\nu}|^2 \frac{m_{\beta\beta}}{m_e^2} \quad \text{Current limits: } \mathsf{T}_{1/2}^{0\nu2\beta} > 10^{24} - 10^{26} \text{ yr}^2$$

CUPID [2] will be the successor of the CUORE experiment

Primary goal: Search for $0\nu\beta\beta$ of ¹⁰⁰Mo ($Q_{\beta\beta}$ =3034 keV)

1596 LMO crystals divided in 57 towers

Expected

0v2β event

Scintillating Li₂¹⁰⁰MoO₄ (LMO) crystal Ge NTL cryogenic light detector Thermistor (NTD Ge) - $R = R_0 e^{\sqrt{\frac{T_0}{T}}}$ Thermal bath

Detection method: Scintillating bolometers

Total mass 450 kg (240 kg of ¹⁰⁰Mo)

1710 NTL Ge light detectors

 $(T_{1/2}^{0
u2eta})^{-1}$

- Will be installed inside CUORE cryostat at LNGS
- Half-life discovery sensitivity (3σ): $1x10^{27}$ yr
- m_{BB} discovery sensitivity (3 σ): 12-20 meV

 \int_{82} Se \int_{100} Mo

- (< 0.2% in the ROI Objective: 5 keV)
- Large masses achievable using arrays of crystals
- Large absorber material choice
- **α identification** and rejection demonstrated with CUPID-0 and CUPID-Mo

CUPID expected background budget

A robust background model built using knowledge acquired with CUORE, CUPID-0 and CUPID-Mo experiments

Objective: b=1.10⁻⁴ ckky Pile-up events give a critical contribution due to fast ¹⁰⁰Mo $2\nu\beta\beta$ (T_{1/2}^{2v2\beta}=7.1x10¹⁸ yr) and slow detector response **Goal**: 0.5·10⁻⁴ ckky Light detectors are the key!

Neganov-Trofimov-Luke light detectors (NTL LDs)

Ge wafer with AI electrodes evaporated on the surface and operated with NTD Ge

Neganov-Trofimov-Luke effect [3]: Applying a voltage difference V through the electrodes causes the e-h pairs created by an event to drift, amplifying the heat signal.

$$E = E_0(1 + \frac{q \cdot V_{el} \cdot \eta}{\epsilon}) = E_0 \cdot G_{NTL}$$

E_o: Particle energy *ε*: energy required to *q*: e⁻ charge create one e⁻/h⁺ pair G_{NTL}: NTL gain $V_{o'}$: Electrode bias

NTL LDs for pile-up rejection

1st underground measurement @ Laboratorio Subterraneo de Canfranc (LSC)

R&D on NTL LDs

We can reject the pile-up events offline using parameters depending on

- 10 NTL LDs with concentric AI rings
- Ge-LD dimension: 45*45*0.3 mm
- Electrodes coverage is $56\% \rightarrow$ Geometric factor correction applied to extract the gain
- Assembled in a tower of five floors
- One discarded due to electronics problem

Pileup Background Index vs SNR vs τ > 1 $BI = 0.5 \ 10^{-4} ckkv$ 10^{3} 0.9 Standard LD Standard LMO NL LSC 0.8 玄 TESs 0.7 0.6 p 10² 0.5 0.4 🛱 0.3 Dile Dile 10¹ 0.1 10^{-1} 10^{0} τ [ms]

8/9 were biased with 80 V to study them \rightarrow **7/8 LDs comply with the CUPID goal!**

A study of NTD response showed that rise times between 0.4 and 0.8 ms are achievable.

2nd underground measurement @ LSC: 14 NTL LDs and 3 different electrode geometries

Concentric electrodes:

- 10 LDs with concentric electrodes (previously tested)
- Showed consistent and similar results
- 9/10 can hold up to 140 V

Square electrodes:

- 1 LD with square electrodes
- Advantages: full geometry coverage
- Similar result to the previous measurement (V_{max}=120 V) **Spiral electrodes:**

the signal pulse-shape

The efficiency of this method depends on the rise-time and the signal-to-noise ratio (SNR) of the signals [4]. The boost on the SNR provided by the NTL LDs is mandatory for CUPID to reach its objective. Target number for the LDs:

Rise-time	SNR	Baseline RMS $\sigma @ 0 V$
< 0.7 ms	> 130	100 eV

Detector production

Two production sites:

@ IJCLab, France

- Production of NTL LDs for over a decade Evaporation of the AI electrode with a shadow mask-based method
- @ Argonne, USA
- Knowledge transfer with IJCLab ongoing

- 3 LDs with spiral electrodes
 - Advantages: full geometry coverage + facilitate the evaporation & the bondings
- 2/3 can handle 60 V
- Gain on LED (610 nm) 2x higher than with concentric geometry

Validation of the Berkeley cryogenic setup for NTL LDs characterization

- Test of a device already characterized at IJCLab in France
- Comparison of the results and standardization of the test procedure underway

Other developments and future measurements

- Improvements of the fabrication procedure
- Leakage current investigation
- More electrode geometries explored
- Preparation of a CUPID-like tower composed of 30 NTL LDs (half produced in France and half in the USA)

• Baseline for CUPID recipe

- 1st batch of American NTL LDs will be soon produced
- Photo-lithography for electrode deposition will be also tried

For CUPID, the objective is to split the production of the 1710 NTL LDs between France and the USA

References

[1] M. Agostini, et al., Rev. Mod. Phys. 95 (2023) 025002

[2] See "The CUPID 0vββ experiment" poster ID#376 by V. Berest at this conference [3] V. Novati et al., Nucl. Instrum. Meth. A 940 (2019) 320

[4] A. Ahmine et al., The European Physical Journal C 83 (2023) 373