ID contributo: 442 Tipo: Poster

Exploring the Advantages of an Undoped, Cryogenic CsI Detector for CEvNS Experiments at the SNS with COHERENT

venerdì 21 giugno 2024 17:30 (2 ore)

Inorganic crystal scintillators, especially doped alkali-halide scintillators such as NaI[TI], CsI[TI] and CsI[Na], play an important role in neutrino experiments. The pioneering achievement of the COHERENT experiment, utilizing CsI[Na] for the initial detection of Coherent Elastic Neutrino-Nucleus Scattering (CEvNS), demonstrated a nuclear recoil detection threshold of approximately 8 keV(nr). However, to advance the capabilities of next-generation neutrino detectors, it is crucial to significantly reduce this detection threshold. Recent studies have illustrated that undoped alkali-halide scintillators, when operated at cryogenic temperatures near 77 K, exhibit a substantial increase in light yield –nearly doubling that of their room-temperature counterparts, alongside diminished afterglow effects. This poster outlines the advantages of adopting undoped, cryogenic CsI as a novel detector material for CEvNS experiments, focusing on its implementation in the COHERENT experiment at the SNS, offering a promising pathway to unlocking new physics through enhanced neutrino detection sensitivity.

Poster prize

Yes

Given name

Charlie

Surname

Prior

First affiliation

Duke University

Second affiliation

Triangle Universities Nuclear Laboratory

Institutional email

charlie.prior@duke.edu

Gender

Male

Collaboration (if any)

COHERENT

Autore principale: PRIOR, Charlie (Duke University)

Relatore: PRIOR, Charlie (Duke University)

Classifica Sessioni: Poster session and reception 2

Classificazione della track: New technologies for neutrino physics