Silicon Interposer for the nEXO Experiment: An Ultra-Low-Radioactivity #294 **Solution for the SiPM Photo-detector**

Guofu Cao and Hanwen Wang Institute of High Energy Physics, CAS, Beijing, China

The nEXO Program

- Search for 0vββ decays of ¹³⁶Xe using 5 tonnes of LXe TPC
- Half-life sensitivity: 1.35×10^{28} yr (90% CL), 10 years of data^[1]
- A monolithic LXe TPC detector -- 90% enriched ¹³⁶Xe
- Charge collection: a pad like charge readout tile
- Light collection: ~4.6 m² VUV sensitive SiPMs
- Cold electronics both for charge and light readout
- Energy resolution: < 1%@Q-value</p>

nEXC

 \blacksquare A "background-free" experiment: 7×10^{-5} cts/(FWHM kg yr)

Photo-detector System

- 4.6 m² large area VUV-sensitive SiPMs in the barrel of TPC
- \geq ~46,000 1 cm \times 1 cm SiPMs \rightarrow grouped into 7680 6 cm² readout channels
- 24 staves and each contains 20 tiles, and each tile has 16 readout channels
- Interposer provides supporting and connections of SiPM and readout chips
- Ultra-low radioactivity is a must

Roadmap of Silicon Interposer Development at IHEP/IME

Thickness: 320 um, 3 RDLs

- Number of channels: 64
- Trace length: 95 mm
- Trace width: 50 um
- Trace thickness: 3.5 um
- Large trace resistance: $14^{\sim}30 \Omega$
 - ~1.5% open nets
- Poor insulation: tens of $M\Omega$

- Thickness: 320 um, 3 RDLs
- Number of channels: 11
- Trace: 50 mm (L), 400 um (W), and 3.5 um (T)
- Trace resistance: $< 2 \Omega$
- No open nets
- Insulation: > $1 T\Omega$

2018

2021

2023

2023

The Performance of the Si-Interposer from Run-I^[2]

- \blacksquare The resistance on traces is less than 2 Ω , meets the requirement of < 2 Ω
- The insulation performance is varying among different nets with the minimum of $\sim 120 \text{ G}\Omega$ (the requirement is > 1 T Ω)
- No breakdown is observed with voltages up to 100 V

Status of Run-II and Run-III

- The Si-interposers from Run-II (for FBK SiPMs) have been fabricated in 2023, and the Run-III (for HPK SiPMs) is under fabrication.
- \blacksquare Excellent insulation performance achieved on the overall interposer, > 1 T Ω
- FBK SiPMs fully assembled on the interposer, and no mechanical issues were found during several rounds of temperature cycling tests, up to 0.4 °C/min
- More testing results will come soon

The single photon signal can be clearly observed by mounting SiPMs on the interposer and tested at LXe temperature

■ The radiopurity is measured by ICP-MS at PNNL 10⁴

> 238U: 4.6 ppt, 232Th: 2.3 ppt, we are satisfied

Materials	Total mass (mg)	Mass fraction (%)
Silicon	7448.2	90.45
Copper	471.6	5.73
Nickel	177.6	2.16
Polyamide	177.6	0.84
Silicon dioxide	25.4	0.31
Palladium	24	0.29
Titanium	15	0.18
Gold	3.9	0.05

Summary and References

Si-interposer provides a solution for building a SiPM-based ultra-low

radioactivity photo-detector.

Si-interposer development at IHEP/IME is in good shape and the

performance is quite promising.

[1] J. Phys. G: Nucl. Part. Phys. 49 (2022) 015104 [2] IEEE TNS 70 (2), 129-138 2023

Neutrino 2024, June 16-22, 2024, Milan, Italy

