DEEP UNDERGROUND NEUTRINO EXPERIMENT 2x2 Demonstrator: **High-Coverage Light Readout System** in a Novel LATPC THE UNIVERSITY OF CHICAGO

Angela J. White | ajwhite@uchicago.edu

The Deep Underground Neutrino Detector (DUNE):

DUNE is a **long-baseline** Liquid Argon Time Projection Chamber (LArTPC) neutrino oscillation experiment. Its near detectors, located at Fermi National Laboratory, will **constrain systematic** errors on far detector measurements. The 2x2 Demonstrator, a novel proof of concept prototype for the ND LArTPC, has a modular TPC design that mitigates event pileup in a high-occupancy 1.40 m nearline beam enviroment, further aided by a **native 3D pixelated** charge readout and a **30% coverage**, low profile light readout. This will be the first large-scale LArTPC to utilize pixels in place of wire planes.

2x2 Demonstrator¹: 104m belowground, four modular LArTPCs sit between muon tracking MINERvA planes, centered in a **muon anti-neutrino beam**.

Light Readout System (LRS) Design:

The 2x2 Demonstrator LRS utilizes 384 Hamamatsu S13360-6050PE sillicon photomultipliers (SiPMs) and two alternating types of dielectric light trap:

ArCLight³ (ACL)

Dimension: 30cm x 50cm x 1cm **Channels:** 6 SiPM Channels distributed evenly along anode edge **Strengths:** Spatial Resolution

Light Collection Module⁴ (LCM)

Dimension: 10cm x 50cm x 1cm **Channels:** 2 SiPM channels distributed evenly along anode edge, coupled by wavelength shifting fiber

Strengths: Timing resolution, higher photon detection efficiency

Original LCM Waveform: Pedestal Subtracted

Timing Resolution and Charge-Light Matching:

SiPM Resolution (σ /Signal)

LCM channel pairs coupled to the same WLS fiber will record light peaks occurring at the same time tick, within a range of error; this defines the LRS timing resolution. **Right:** precise timing of an LCM peak determined via oversampling. **Below²:** Timing differencials between coupled LCM channels across various peak amplitudes.

Stopping muons² with Michel electrons can be identified using just the light readout. The muon and electron peak separation is determined by the muon lifetime, which follows an exponential distribution with a mean of 2.2 µs—a clear signature given ns-scale resolution.

	DUNE:ND-LAr 2x2 ²	DUNE:ND-LAr 2x2 ²
LEDs positioned at the		Entries 1000 6 87
· · ·		

References

- ¹ DUNE Collaboration. Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design Report. Instruments 2021, 5. https://doi.org/10.3390/instruments5040031.
- ² DUNE Collaboration. Performance of a Modular Ton-Scale Pixel-Readout Liquid Argon Time Projection Chamber. 2024. https://doi.org/10.48550/arXiv.2403.03212.
- ³ Auger; et al. ArCLight—A Compact Dielectric Large-Area Photon Detector. Instruments 2018, 2. https://doi.org/10.3390/instruments2010003.
- ⁴ Anfimov; et al. Development of the Light Collection Module for the Liquid Argon Time Projection Chamber (LArTPC). Journal of Instrumentation 2020, 15, C07022–C07022. https://doi.org/10.1088/1748-0221/15/07/c07022.