

A novel optical imaging system for the LAr detector GRAIN

Francesco Chiapponi, on behalf of the DUNE collaboration INFN - Sezione di Bologna and Dipartimento di Fisica e Astronomia dell'Università di Bologna, Bologna, Italy

The Deep Underground Neutrino Experiment

The physics:

- Determine CP violation for the leptonic sector
- Determine neutrino mass ordering Precision measurement of mixing angles

The Far Detector:

 1500 m underground (4850 mwe) Multi-kiloton detector based on

Near Detector

During Phase I, it will include three primary detector components:

- ND-LAr
- Muon Spectrometer
- SAND

ND-LAr and TMS will move off-axis in order to "scan" over the spectrum of v energies

System for on-Axis Neutrino Detection (SAND)

- Detect solar and supernovae neutrinos
- BSM physics studies

liquid Argon TPC

2 modules (Phase I) with 20kt total fiducial mass

GRAIN detector

GRAIN will use an innovative approach based on the detection of Argon scintillation light, ensuring crosscalibration with the other ND components to constrain systematic uncertainties from nuclear effects.

Objective

Reconstruct particle tracks using only scintillation light

Requirements

- Segmented sensors on the inner cryostat walls
- Resolution <1cm
- Time resolution < 1 ns
- Light sensors operating in the VUV range (127nm)
- Sensors and electronics operating in LAr (87K)

Optical system

Multipurpose detector: its physics goals include *monitoring* of the onaxis $v - \bar{v}$ spectra to detect beam variations on a weekly basis, and perform neutrino cross section studies on different nuclear targets, together with on-axis *flux measurement* for a robust analysis in combination with other ND detectors.

9 CH₂

It is composed by:

- Superconducting solenoid (0,6 T)
- Electromagnetic calorimeter $\sigma_E/E \cong 5\%/\sqrt{E(GeV)}$
 - $\sigma_t \cong 40 ps / \sqrt{E(GeV)}$
- GRAIN (1t LAr active target)
- Light Straw Tube Tracker (STT) with distributed CH₂ and C targets

ECAL 1 C MODULE GRAIN STT MODULES YY straws

SC magnet and em calorimeter from KLOE experiment

Current work and perspectives

- 1. 3D event reconstruction with coded aperture masks systems
- Iterative algorithm based on Maximum Likelihood - \bullet Expectation Maximization
- Directly reconstructs in 3D the initial photon source distribution in a segmented volume (voxels)
- Maximizes the likelihood that an initial distribution density can produce the observed data
- Requires significant GPU resources

Tests with hardware demonstrator

Development of 1024 channel ASIC 4.

Upgrade of ALCOR ASIC (32 channels) :

- 1024 channels
- Operated at cryogenic and room temperature
- Power consumption < 5 mW/ch
- E branch : charge integrators + Wilkinson ADC
- T branch : Time-to-Amplitude Converters + Wilkinson ADC
- Front-End structure is currently under study

References

- Cicero V., Study of the tracking performance of a liquid Argon detector based on a novel optical imaging concept, Ph.D Thesis, Alma Mater Studiorum - Universit`a di Bologna (2023)
- NU@FNAL collaboration, Coded masks for imaging of neutrino events, Eur. Phys. J. C, **81** (2021) 1011
- Kugathasan R., A low-power mixed-signal ASIC for readout of SiPM at cryogenic temperature, PoS(TWEPP2019), **370** 011

Contact: francesco.chiapponi@bo.infn.it