

What is the minimal neutrino flux associated to the Ultra-high-energy cosmic rays?

<u>UHECRs</u>

Extra-galactic contribution

- The mass-discriminated energy-flux spectra of UHE cosmic rays present some **features**:
- A component of Fe nuclei is observed to **falloff**
- steeply above 1017 eV (end of the galactic spectrum?), while protons, helium, and CNO-group nuclei fluxes

 10^{18}

 10^{1}

 10^{17}

- are well reproduced
- by nuclear
- components that

 10^{19}

E (eV)

 10^{20}

Assuming a generic source as standard candle for UHECR acceleration ____ luminous infrared galaxies (LIRGs). Propagation in the **source environment** and in the **extra-galactic space** -> computing neutrino fluxes associated for different acceleration hypothesis.

rigidity featuring

a hard spectral

index.

Bands -> different hadronic interaction models.

 10^{18}

Galactic contribution

Take-home message

Target: Most of the mass in the interstellar medium in the Galaxy is distributed predominantly in the disk and is made by hydrogen ($\simeq 90\%$) and

helium ($\simeq 10\%$) in gaseous state. Two models of

the spatial distribution of the gas are used ->

differences in the final neutrino expectation.

