Relativistic meson-exchange currents in lepton-nucleus scattering

V. Belocchi

Università degli Studi di Torino & INFN, Torino valerio.belocchi@unito.it

Formalism

When a lepton interacts with a nucleus two -or more- nucleons in the same interaction can be ejected, yielding to a np - nhprocess. This is a pure nuclear effect. Specifically, we focus on the 2p2h, based on RFG.

The nuclear tensor contains matrix elements:

 $w_{\mu\nu} \propto \langle F | \hat{J}^{2b\dagger}_{\mu} | 2p2h \rangle \langle 2p2h | \hat{J}^{2b}_{\nu} | F \rangle$

DI TORINO

with $|F\rangle$ the Fermi sphere and $|2p2h\rangle$ the 2p2h state. \hat{J}^{2b}_{μ} is a two-body current, that is obtained following the Meson Exchange Currents (MEC) formalism. Correlated partner proton or neutron

Subedi et al., Science 320, 1476 (2008)

Meson Exchange Currents

MEC for the EM-EW interaction, related to Δ resonance -a,b,c,d-, 'contact' -e,f-, 'pion-in-flight' -g- and 'pion-pole' -h,i- currents.

Inclusive EW differential cross section as a function of the scattering angle and the energy transfer ω . Incident neutrino energy $E_{\nu_{\mu}} = 550$ MeV, corresponding to T2K ND flux peak.

Semi-inclusive process

In a semi-inclusive lepton-nucleus scattering an outgoing nucleon is detected in addition to the final lepton. We computed theoretical predictions for detected nucleon p_1 lying on the scattering plane, $\phi_{p_1} = 0$. Lepton-nucleus semi-inclusive cross-section:

 $\frac{d^6\sigma}{d\omega d\Omega_{e'}dE_m d\Omega_{p_1}} = \frac{p_1 E_{p_1}}{(2\pi)^3} \sigma_0 \frac{L_{\mu\nu}}{\nu_0} W^{\mu\nu}_{A(N)}$

J.M. Franco-Patiño, PhD Thesis (2024)

Reaction plane

$$W_{A(N)}^{\mu\nu} := \frac{d W_A^{\mu\nu}}{d\mathbf{p_1}} \qquad E_m = \omega - E_{p_1} + m_N$$

Integration over holes and one particle only momenta \Rightarrow numerous non-vanishing hadronic contributions

Results

Scattering

 J^{2b}_{μ} is a fully relativistic two-body current, corresponding to the coupling of the virtual boson to a pair of nucleons exchanging a pion. It is derived from the Non-Linear σ -model Lagrangian investigated in [1], where the Δ resonance is incorporated *ad hoc*.

On the right exempla of *direct* and *exchange* many-body diagrams, included in our computations, obtained combining two MEC currents.

Inclusive process

In an inclusive lepton-nucleus scattering only the outgoing lepton is detected: the 2p2h cross section is obtained including every possible hadronic final state with two ejected nucleons. Lepton-nucleus inclusive cross-section:

 $\frac{\mathrm{d}^2 \sigma}{\mathrm{d} \mathrm{E}_{\mathrm{e}'} \mathrm{d} \Omega_{\mathrm{e}'}} = \sigma_0 \frac{L_{\mu\nu}}{\nu_0} W_A^{\mu\nu} \qquad W_A, \ L \text{ nuclear and leptonic tensor}$

We described the 2p2h hadronic tensor in a RFG framework, hence:

$$\begin{split} W^{\mu\nu}_{(2p2h)} &= \frac{1}{4} \frac{V}{(2\pi)^9} \sum_{\substack{s_1, s_2, s_1', s_2' \\ t_1, t_2, t_1', t_2'}} \int_{\substack{\mathbf{h}_i < k_F \\ \mathbf{p}_i > k_F}} d\mathbf{h}_1 d\mathbf{h}_2 d\mathbf{p}_1 d\mathbf{p}_2 \,\delta^4(p_1 + p_2 - h_1 - h_2 - \tilde{q}) \, w_{\mu\nu} \\ \tilde{q} &:= (\tilde{\omega}, \mathbf{q}), \quad \tilde{\omega} := \omega - E_s^{2p2h}, \quad \text{for } {}^{12}C \Rightarrow E_s^{2p2h} = 40 \text{ MeV}, \, k_F = 228 \text{ MeV} \end{split}$$

Integration over holes and particles momenta \Rightarrow less non-vanishing hadronic contributions

Semi-inclusive predictions, with incident lepton energy E=478 MeV, energy transfer ω =263 MeV, momentum transfer q=303 MeV/c and proton scattering angle θ_p . Left: electron-carbon scattering, in violet the pion production threshold, data from [4]; right: CC muonic neutrino-carbon scattering, similar predictions can be found in *J. Niewczas, PhD Thesis (2023)*. The isospin separation for ejected nucleons in final state is performed.

Conclusion

We computed the 2p2h contribution for the inclusive and semi-inclusive lepton-carbon scattering, showing preliminary weak predictions.

In particular, we tested the EM-MEC formalism comparing with available semi-inclusive data focused in the 'dip' region. For details, see [5].

Currently the 2p2h component of the cross section is simulated in event generators on the basis of inclusive calculations, necessarily relying on strong approximations. The model aims to provide a reliable description of neutrino-nucleus semi-inclusive 2p2h process, for which a complete microscopic and fully relativistic computation is still absent in the literature, although it is strongly needed for the correct interpretation of neutrino data.

Results

We tested our model with previous inclusive calculations for the electron [2] and for the CC neutrino [3] scattering.

Double differential cross section for $e^{12}C$ and $\nu_{\mu}{}^{12}C$, with quasi-elastic contribution evaluated using RFG nuclear model and the 2p2h, computed using MEC. Electron data are also shown, from archive 10.48550/arXiv.nucl - ex/0603032.

References

- [1] E. Hernandez, J. Nieves and M. Valverde, "Weak Pion Production off the Nucleon", Phys. Rev. D 76, 033005 (2007), hep-ph/0701149.
- [2] A. De Pace, M. Nardi, W. M. Alberico, T. W. Donnelly and A. Molinari, "Role of 2p 2h MEC excitations in superscaling", Nucl. Phys. A 741, 249 (2004), nucl-th/0403023.
- [3] G. D. Megias, J. E. Amaro, M. B. Barbaro, J. A. Caballero, T. W. Donnelly and I. Ruiz Simo, "Charged-current neutrino-nucleus reactions within the superscaling meson-exchange current approach", Phys. Rev. D 94, 093004 (2016), arxiv:1607.08565.
- [4] J. Ryckebusch, V. Van der Sluys, M. Waroquier, L. J. H. M. Kester, W. H. A. Hesselink, E. Jans and A. Zondervan, "*Two nucleon knockout contributions to the* ¹²*C (e, e' p) reaction in the dip and* ∆ (*1232) regions*",
 Phys. Lett. B 333, 310 (1994), nucl-th/9406015.
- [5] V. Belocchi, M. B. Barbaro, A. De Pace and M. Martini, "Relativistic meson-exchange currents in semi-inclusive lepton scattering", Phys. Rev. C 109, 065502 (2024), https://link.aps.org/doi/10.1103/PhysRevC.109.065502.