Study of the neutrino energy reconstruction from final state particles and effects related to the simulation of the physics of neutrino interactions in DUNE **IEUTRINO EXPERIMENT**

Ginevra De Lauretis on behalf of the DUNE collaboration

Motivation and contest

DUNE

Wide band beam covering the first two $v_{\mu} \rightarrow v_{e}$ oscillation maxima High potentiality to extract information from the energy spectrum of detected neutrinos

LAr TPC and particles reconstruction

- Neutrinos interact with LAr nuclei. Their energy and flavour reconstructed from particles in final state via ionization \circ charged particles measured by dE/dx
 - neutral particles observed via interactions and their charged

- "Electronic bubble chamber" with very good energy and space resolution
 - charged particles at ionization minimum deposit ~10k electrons/mm of path
 - \circ space resolution ~1.5 mm

real energy of interacted **v**

reco energy (TDR)

Neutrinos interactions final state particles

 $E_{v}\sigma$ intrinsically limited by v interaction physics

 p,n,π,oth

Adding masses (not necessarily created by E₁) results in large bias and bad resolution

Best method: neglect hadron masses (use only E_{ν}) Neutrons included in the energy budget

GENIE : $\sigma = 5.5$ %, bias = - 4%

GiBUU: $\sigma = 6.2$ %, bias = - 5%

QE dominates at 2nd max some model differences between GENIE and GiBUU for interplay between RES and DIS antineutrinos

W hadronic invariant mass as a function of the process

Reconstructed spectrum with best method for **GENIE**

Is there a subsample with a better impact at the 2nd max?

 $1p0\pi$ sample: CCQE-like (ignoring neutrons) NH $\delta_{CP} = 0$

