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Quantum Transport Theory for mixing Neutrinos
ABSTRACT
Wederivequantumkinetic equations formix-
ing neutrinos including consistent forward
scattering terms and collision integrals for
coherent neutrino states. Our derivation is
valid for arbitrary neutrino masses and kine-
matics, it includes the local coherence ef-
fects, and a comprehensive set of generalized
Feynman rules for computing the coherent
collision integrals. We also discuss the im-
portance of helicity coherence and particle-
antiparticle coherence in the case of adia-
batic background fields using field theoret-
ical methods. Our results can be used, for
example, to model neutrino distributions ac-
curately in hot and dense environments and
to study the production and decay of heavy
neutrinos in colliders.

QUANTUMKINETIC EQUATIONS
Coherently mixing neutrinos can be described by a
set of Kadanoff-Baym (KB) equations for real-time
valued correlation functions. These KB equations
are manifestly non-local and feature a direct cou-
pling between the statistical functions and the pole
functions. In order to reduce them to a single quan-
tum kinetic equation (QKE), one must both localize
them and decouple the pole equations from the sta-
tistical equations. In the decoupling problem the key
idea is to split the statistical function into a back-
ground, which is strongly coupled to the pole func-
tions, and to a perturbation part whose equation for-
mally decouples. In turn, fromWigner-space point
of view the localization task is to curtail the infinite
expansion in gradients which can be justified by as-
sumption of adiabaticity. The resulting local and
decoupled QKEs, whose solutions are characterized
by eigenfrequencies, read [1]
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sum over the repeated indices a (energy sign) and
l (flavor) is understood. We defined the oscillation
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These QKEs describe both flavor and particle-
antiparticle oscillations for arbitrary neutrino
masses with arbitrary interactions in backgrounds
that are only constrained to be adiabatic in space.
This generality results to the complex tensor struc-
tures in the QKEs.

In the UR-limit when neglecting the particle-
antiparticle oscillations, our QKEs reduce to a fa-
miliar form of density matrix evolution equation:
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with ¯̄v ≡ δi jk/ωk i .

COLLISION INTEGRALS
Computation of the collision term with flavor and
particle-antiparticle mixing for arbitrary neutrino
masses and kinematics has been an unsolved prob-
lem so far. However, using our formalism this task is
straightforward, and the collision term can be writ-
ten simply as [2]
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and the (effective) invariant matrix element squared
(M2)e′e

khi j {piY } contains all the diracology which is
computed using the following set of generalized
Feynman rules:
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ing matrix. The red propagator is called the depen-
dent momentum propagator, and is of special inter-
est since it depends on the momentum related to
which the QKEs are solved. In contrast to the usual
neutrino QKE’s, both direct and interference terms
of s, t and u channels contribute to the collision term
in our formalism:
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In environmentswhere collisions between neutrinos
are important, these flavor off-diagonal collisions
should be taken into account.

WEIGHT FUNCTIONS
We can never have complete and exact information
about a system. This means that the physical quan-
tities that one can study are some smeared-out ob-
jects which carry information about the preparation
of the system into the theory. Quantitatively this
means that the correlator (i.e. Wightman function
Si j (k̄ , x̄ )), which consists of physically measurable
quantities k̄ and x̄ , is weighted average of the origi-
nal correlator:
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where W is the weight function encoding the ob-
servationally accessible information about the sys-
tem. Weight functions generalize our formalism and
give an adjustable and quantitative way to take the
effects of neutrino production and detection pro-
cesses into account when describing neutrino evo-
lution.
For example, the QKEs presented here corresponds
to using the wieght function

W(k̄ , x̄ ; k , x ) = (2π)3δ3(k̄ − k ) δ4(x̄ − x ).

This setup is suitable for studying problems includ-
ing particle-antiparticle mixing, such as particle pro-
duction, where the particle-and antiparticle mixing
shells are widely separated.

COHERENCE EFFECTS
From our formalism it is evident that neither the
particle-antiparticle coherence nor the helicity co-
herence is relevant for most of the neutrino physics,
including e.g. supernova physics. That is, the col-
lective phenomena for neutrino-antineutrino or he-
licity coherence are negligible. However, the flavor
structure of neutrino-neutrino collisions is more rich
than considered in the literature.

CONCLUSIONS
•Derived QKEs include flavor and particle-
antiparticle xoherence, and are valid for
arbitrary neutrino masses and kinematics.

•Generalized Feynman rules provide sys-
tematic and simple way to compute col-
lision terms with flavor and particle-
antiparticle coherences.

•Weight functions carry prior information
of the system into the theory, giving quan-
titative way to study the effect of neutrino
production and detection processes to neu-
trino evolution.
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