XXXI International Conference on Neutrino Physics and Astrophysics

Contribution ID: 67

Type: Poster

Flow Matching Mitigates Gaussian Error Approximations in Neutrino Cross-Section Measurements

Friday, 21 June 2024 17:30 (2 hours)

Uncertainties in neutrino-nucleus cross-section measurements are usually evaluated by considering the spread of a measurement over an ensemble of variations of systematic parameters under the assumption they are distributed as a multivariate gaussian.

However, this cannot always be expected to be a safe assumption, in particular as we enter an era of systematiclimited measurements.

We showcase examples in which this assumption leads to incorrect conclusions when benchmarking neutrino interaction models and propose a solution to the issue.

We propose a method of directly learning the density of throws based on flow matching - a state-of-the-art generative modelling paradigm for training continuous normalizing flows.

We test our method in a realistic cross-section measurement example, showing it achieves excellent highdimensional density estimation, surpassing the gaussian baseline and other machine learning methods.

Poster prize

Yes

Given name

Radi

Surname

Radev

First affiliation

CERN

Second affiliation

Institutional email

radi.radev@cern.ch

Gender

Male

Collaboration (if any)

Primary authors: RADEV, Radi (CERN); DOLAN, Stephen (CERN)

Presenter: RADEV, Radi (CERN)

Session Classification: Poster session and reception 2

Track Classification: Neutrino interactions