2p-2h Cross-Section Systematics in DUNE

Intranuclear Mediu

n CCQE Interaction

D

[2]

Lars Bathe-Peters lars.bathe-peters@physics.ox.ac.uk

Motivation

- Problem: Incomplete understanding of neutrinonucleus scattering processes and nuclear effects
- Goal: Obtain interaction model with associated uncertainties
- How: Design uncertainty parameters to account for model-to-model **discrepancies** in the DUNE oscillation analysis

Processes

• Charged-Current (CC) inclusive muon neutrino interactions

 $E_{v_{\mu}}$ [GeV]

[1]

Why do we want to

vary systematic

parameters?

Nuclear Effects

- Initial State Effects:
 - Fermi Motion
 - Nuclear Binding Energy
 - Nucleon-Nucleon-Correlations
- Nucleon Correlation Effects:
 - 1p1h-, 2p2h-(*MEC-)interactions
- Final State Interactions:
 - Intranuclear re-scattering
 - Alteration of final state kinematics
 - Stimulation of nuclear absorption and emission

*MEC: Meson Exchange Current

Absolute Reconstructed Neutrino Energy Bias

- **Clear separation** between the distributions of the Empirical and Valencia/ SuSAv2 CC 2p-2h models
- **Choose uncertainties** \bullet such that the measurement of the oscillation parameters is not biased in case the wrong model is chosen
- $E_{\nu}^{\rm rec} = \sum E_{\rm kin} + \sum E + E_{\rm lep}$

Simulation

UNIVERSAL NEUTRINO GENERA' & GLOBAL FIT

• Simulate CC MEC neutrino interactions with **GENIE**

• Vary parameters and compare predictions to determine uncertainties

CC MEC Interaction V^{μ} . Intranuclear Medium

Óp

Sp

[1]

CC MEC

Energy Dependence

True Neutrino Energy GENIE v3.4.0, ν_{μ} on Ar, SuSAv2 CC 2p-2h

New Meson Exchange **Current Model** Uncertainties

• Changes dependence of decay angle of struck nucleon pair (an ad-hoc assumption on angular distribution of outgoing nucleons) away from isotropic distribution

Nucleon Pair Content

Energy vs Momentum Transfer q_3 [GeV]

Interpolation between Models

• Changes the pn-pair content in the initial nuclear state

- Deficiencies in existing neutrino-nucleus interaction modelling represent a leading source of systematic uncertainties
- **Reduction of systematic uncertainties** is crucial for precision neutrino oscillation parameter measurements
- Variation of systematic parameters will allow a robust estimate of systematics in modern experiments such as DUNE

Bathe-Peters, M.S. thesis, Harvard University and Technische Universität Berlin, Apr. 2020. Bathe-Peters, S. Gardiner, R. Guenette., FERMILAB-PUB-22-007-SCD, arXiv: 2201.04664, Jan. 2022. P. Abratenko, R. An, J. Anthony, et al., Phys. Rev. D, 105, Apr. 2022. . Dolan, G. D., Megias, S. Bolognesi, Phys. Rev. D, 101 033003, Feb. 2020.

Poster ID: 35

In collaboration with: Kirsty Duffy, Stephen Dolan, Laura Munteanu

XXXI International Conference on Neutrino Physics and Astrophysics June 16-22, 2024 Milan, Italy

