Technische Universität München

seesaw effective field theories

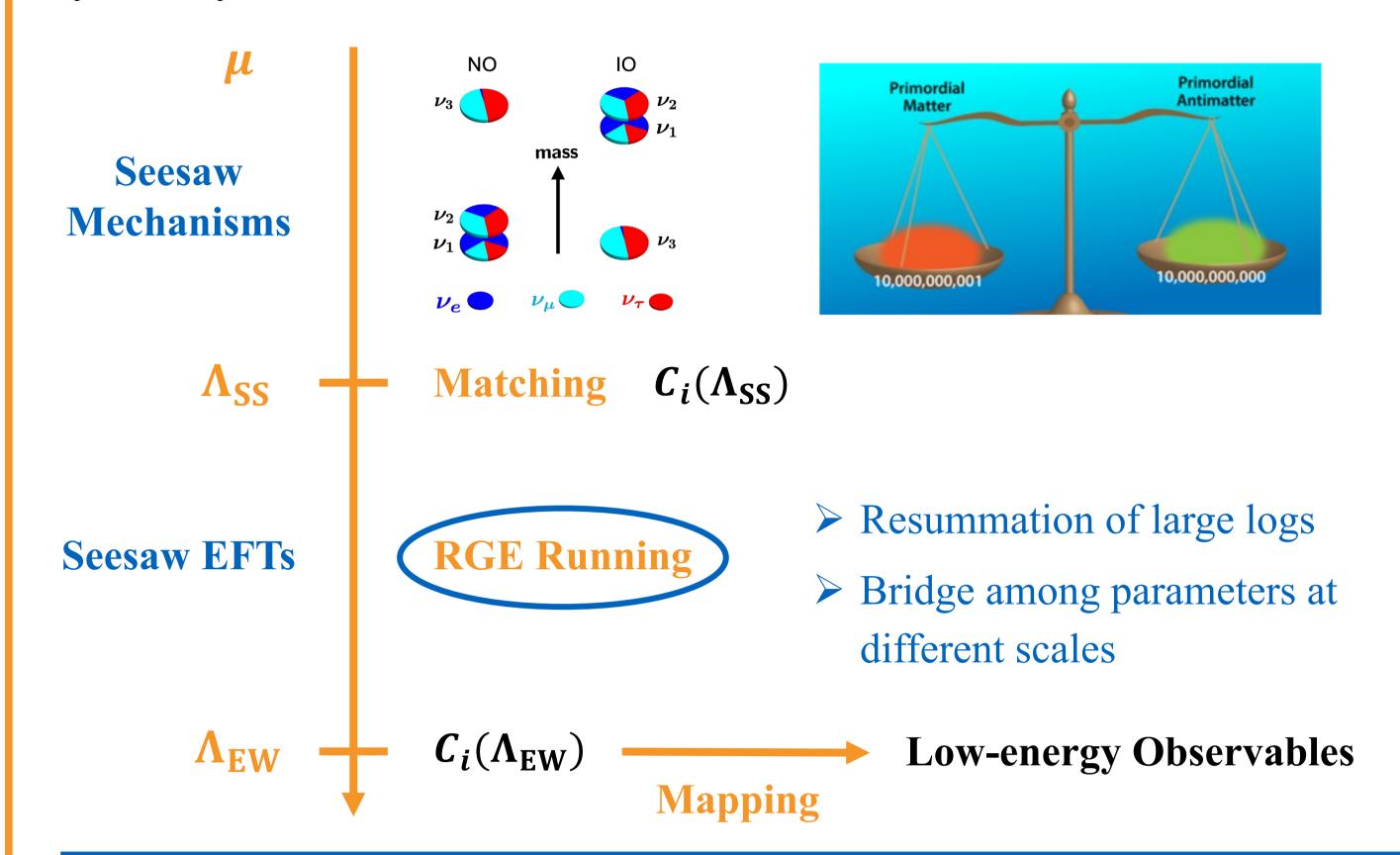
Yilin Wang^{1,2}, **Di Zhang³** (Speaker:di1.zhang@tum.de), Shun Zhou^{1,2}

1. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

2. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 3. Physik-Department, Technische Universität München, James-Franck-Straße, 85748 Garching, Germany

I. Seesaw Effective Field Theories

Seesaw mechanisms are the simplest and the most natural ways to explain tiny neutrino masses and may also elegantly account for the matter-antimatter asymmetry of the Universe.



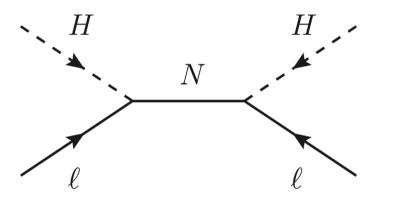
To achieve the complete one-loop RGEs up to $O(1/\Lambda_{SS}^2)$ in the seesaw EFT induced by the type-I seesaw mechanism

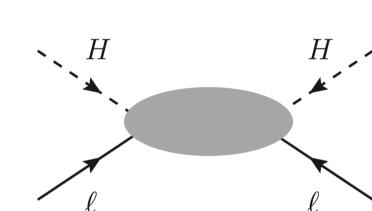
II. Matching at the Tree Level

The type-I seesaw mechanism: Three singlet right-handed neutrinos

$$\mathcal{L}_{\mathrm{SS}} = \mathcal{L}_{\mathrm{SM}} + \overline{N_{\mathrm{R}}} \mathrm{i} \partial N_{\mathrm{R}} - \left(\frac{1}{2} \overline{N_{\mathrm{R}}^{\mathrm{c}}} M_{\mathrm{R}} N_{\mathrm{R}} + \overline{\ell_{\mathrm{L}}} Y_{\nu} \widetilde{H} N_{\mathrm{R}} + \mathrm{h.c.} \right)$$

Integrating out heavy right-handed neutrinos at the tree level





The tree-level seesaw EFT up to $O(1/\Lambda_{SS}^2)$:

$$\mathcal{L}_{\text{SEFT}} = \mathcal{L}_{\text{SM}} + \frac{1}{2} \left(C_5^{\alpha\beta} \mathcal{O}_{\alpha\beta}^{(5)} + \text{h.c.} \right) + C_{H\ell}^{(1)\alpha\beta} \mathcal{O}_{H\ell}^{(1)\alpha\beta} + C_{H\ell}^{(3)\alpha\beta} \mathcal{O}_{H\ell}^{(3)\alpha\beta}$$

Dim-5 $\mathcal{O}_{\alpha\beta}^{(5)} = \overline{\ell_{\alpha\mathrm{L}}}\widetilde{H}\widetilde{H}^{\mathrm{T}}\ell_{\beta\mathrm{L}}^{\mathrm{c}}$ The Weinberg operator Neutrino masses

Dim-6 $\mathcal{O}_{\alpha\beta}^{(1)} = \left(\overline{\ell_{\alpha L}} \gamma^{\mu} \ell_{\beta L}\right) \left(H^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} H\right)$ $\mathcal{O}_{\alpha\beta}^{(3)} = \left(\overline{\ell_{\alpha L}} \gamma^{\mu} \sigma^{I} \ell_{\beta L}\right) \left(H^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu}^{I} H\right)$

Unitarity violation of the lepton flavor mixing

The corresponding Wilson coefficients at the matching scale $\mu_M \sim \Lambda_{SS} = O(M_R)$

$$C_5 (\mu_{
m M}) = Y_{\nu} M_{
m R}^{-1} Y_{\nu}^{
m T}$$

$$C_{5}\left(\mu_{\rm M}\right) = Y_{\nu} M_{\rm R}^{-1} Y_{\nu}^{\rm T} \qquad C_{H\ell}^{(1)}\left(\mu_{\rm M}\right) = -C_{H\ell}^{(3)}\left(\mu_{\rm M}\right) = \frac{1}{4} Y_{\nu} M_{\rm R}^{-2} Y_{\nu}^{\dagger}$$

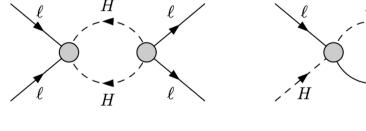
III. One-loop RGEs in the Seesaw EFT

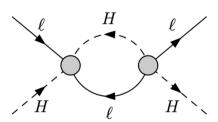
The general structure of the RGEs up to $O(1/\Lambda_{SS}^2)$

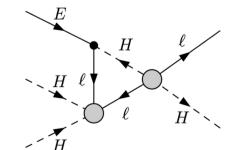
$$16\pi^2 \mu \frac{dC_i^{(5)}}{d\mu} = \gamma'_{ij} C_j^{(5)}$$

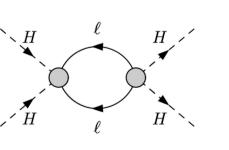
 $16\pi^2 \mu \frac{\mathrm{d}C_i^{(5)}}{\mathrm{d}\mu} = \gamma'_{ij} C_j^{(5)} \qquad 16\pi^2 \mu \frac{\mathrm{d}C_i^{(6)}}{\mathrm{d}\mu} = \gamma_{ij} C_j^{(6)} + \widehat{\gamma}_{jk}^i C_j^{(5)} C_k^{(5)}$

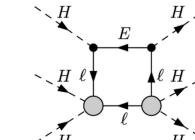
- ➤ Single insertion of the dim-5 and dim-6 operators (Too many to show)
- ➤ All double insertions of the dim-5 operator











RGEs

1PI diagrams

UV divergences (counterterms)

a) Results for the RGEs of the SM couplings

$$T \equiv \operatorname{tr}\left(Y_l Y_l^{\dagger} + 3Y_{\mathrm{u}} Y_{\mathrm{u}}^{\dagger} + 3Y_{\mathrm{d}} Y_{\mathrm{d}}^{\dagger}\right)$$

$$16\pi^2 \mu \frac{\mathrm{d}g_1}{\mathrm{d}\mu} = \frac{41}{6}g_1^3 , \qquad 16\pi^2 \mu \frac{\mathrm{d}Y_l}{\mathrm{d}\mu} = \left[-\frac{15}{4}g_1^2 - \frac{9}{4}g_2^2 + T + \frac{3}{2}Y_lY_l^{\dagger} - 2m^2\left(C_{H\ell}^{(1)} + 3C_{H\ell}^{(3)}\right) \right] Y_l ,$$

$$16\pi^{2}\mu \frac{\mathrm{d}g_{2}}{\mathrm{d}\mu} = -\frac{19}{6}g_{2}^{3} , \qquad 16\pi^{2}\mu \frac{\mathrm{d}Y_{\mathrm{u}}}{\mathrm{d}\mu} = \left[-\frac{17}{12}g_{1}^{2} - \frac{9}{4}g_{2}^{2} - 8g_{s}^{2} + T + \frac{3}{2}\left(Y_{\mathrm{u}}Y_{\mathrm{u}}^{\dagger} - Y_{\mathrm{d}}Y_{\mathrm{d}}^{\dagger}\right)\right]Y_{\mathrm{u}} ,$$

$$16\pi^{2}\mu \frac{\mathrm{d}g_{s}}{\mathrm{d}\mu} = -7g_{s}^{3} . \qquad 16\pi^{2}\mu \frac{\mathrm{d}Y_{\mathrm{d}}}{\mathrm{d}\mu} = \left[-\frac{5}{12}g_{1}^{2} - \frac{9}{4}g_{2}^{2} - 8g_{s}^{2} + T - \frac{3}{2}\left(Y_{\mathrm{u}}Y_{\mathrm{u}}^{\dagger} - Y_{\mathrm{d}}Y_{\mathrm{d}}^{\dagger}\right)\right]Y_{\mathrm{d}} ,$$

$$16\pi^{2}\mu\frac{\mathrm{d}\lambda}{\mathrm{d}\mu} = 24\lambda^{2} - 3\lambda\left(g_{1}^{2} + 3g_{2}^{2}\right) + \frac{3}{8}\left(g_{1}^{2} + g_{2}^{2}\right)^{2} + \frac{3}{4}g_{2}^{4} + 4\lambda T - 2\mathrm{tr}\left[\left(Y_{l}Y_{l}^{\dagger}\right)^{2}\right]$$

$$+3\left(Y_{\rm u}Y_{\rm u}^{\dagger}\right)^{2}+3\left(Y_{\rm d}Y_{\rm d}^{\dagger}\right)^{2}+m^{2}{\rm tr}\left(2C_{5}C_{5}^{\dagger}-\frac{8}{3}g_{2}^{2}C_{H\ell}^{(3)}+8C_{H\ell}^{(3)}Y_{l}Y_{l}^{\dagger}\right).$$

III. One-loop RGEs in the Seesaw EFT

b) Results for the RGEs of higher-dimensional operators

$$\begin{split} \text{Dim-5} & \quad 16\pi^2 \mu \frac{\mathrm{d}C_5}{\mathrm{d}\mu} = \left(-3g_2^2 + 4\lambda + 2T\right)C_5 - \frac{3}{2}\left[Y_l Y_l^\dagger C_5 + C_5\left(Y_l Y_l^\dagger\right)^\mathrm{T}\right] \\ \text{Dim-6} & \quad 16\pi^2 \mu \frac{\mathrm{d}C_{H\ell}^{(1)}}{\mathrm{d}\mu} = \boxed{-\frac{3}{2}C_5C_5^\dagger} + \frac{2}{3}g_1^2 \mathrm{tr}\left(C_{H\ell}^{(1)}\right)\mathbbm{1} + \left(\frac{1}{3}g_1^2 + 2T\right)C_{H\ell}^{(1)} \\ & \quad + \frac{1}{2}\left[\left(4C_{H\ell}^{(1)} + 9C_{H\ell}^{(3)}\right)Y_l Y_l^\dagger + Y_l Y_l^\dagger \left(4C_{H\ell}^{(1)} + 9C_{H\ell}^{(3)}\right)\right] \\ & \quad 16\pi^2 \mu \frac{\mathrm{d}C_{H\ell}^{(3)}}{\mathrm{d}\mu} = \boxed{C_5C_5^\dagger} + \frac{2}{3}g_2^2 \mathrm{tr}\left(C_{H\ell}^{(3)}\right)\mathbbm{1} + \left(-\frac{17}{3}g_2^2 + 2T\right)C_{H\ell}^{(3)} \\ & \quad + \frac{1}{2}\left[\left(3C_{H\ell}^{(1)} + 2C_{H\ell}^{(3)}\right)Y_l Y_l^\dagger + Y_l Y_l^\dagger \left(3C_{H\ell}^{(1)} + 2C_{H\ell}^{(3)}\right)\right] \end{split}$$

Referring to our paper [JHEP 05 (2023) 044] for more results for

- 1) the RGEs of the other 17 dim-6 operators absent at the tree level
- 2) the seesaw EFTs induced by the type-III and type-III seesaw mechanisms

IV. One-loop RGEs of the Flavor Mixing Parameters

After spontaneous symmetry break (in the lepton mass basis)

$$\mathcal{L}_{\text{SEFT}}^{\text{CC}} = \left(\frac{g_2}{\sqrt{2}} \overline{l_{\text{L}}} \gamma^{\mu} V \nu_{\text{L}} W_{\mu}^- + \text{h.c.}\right) \quad \text{Non-unitary lepton flavor mixing}$$

$$q_2 = q_2 - \mu V^{\dagger} V \nu_{\text{L}} W_{\mu}^- + \text{h.c.}$$

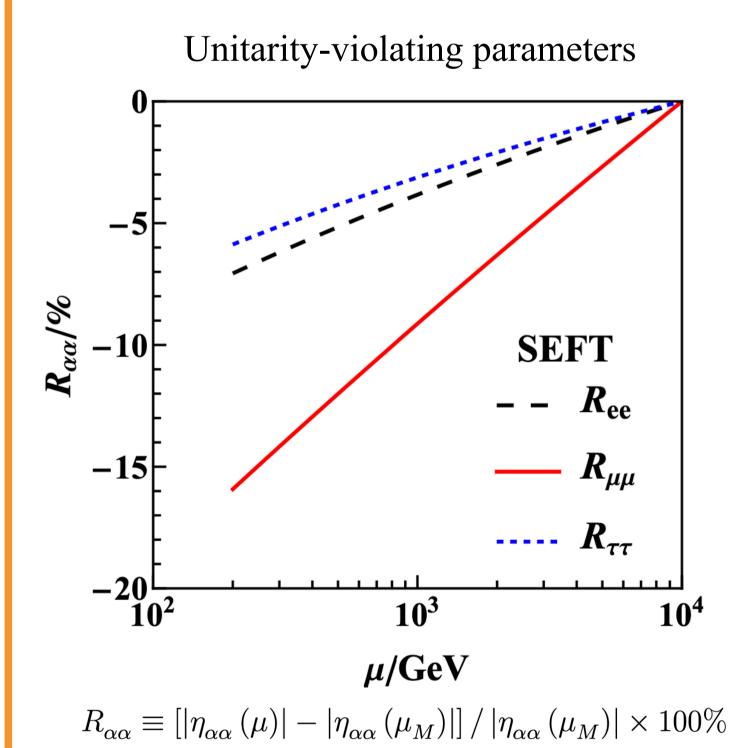
$$\mathcal{L}_{\mathrm{SEFT}}^{\mathrm{NC}} = \frac{g_2}{2c_{\mathrm{W}}} \, \overline{\nu_{\mathrm{L}}} \gamma^{\mu} \underline{N^{\dagger}N} \nu_{\mathrm{L}} Z_{\mu} - \frac{g_2}{2c_{\mathrm{W}}} \, \overline{l_{\mathrm{L}}} \gamma^{\mu} \left[\left(1 - 2s_{\mathrm{W}}^2 \right) + \left(\underline{\eta' - 2\eta} \right) \right] l_{\mathrm{L}} Z_{\mu} + \frac{g_2}{c_{\mathrm{W}}} s_{\mathrm{W}}^2 \overline{l_{\mathrm{R}}} \gamma^{\mu} l_{\mathrm{R}} Z_{\mu}$$
 FCNC
$$V \equiv (1 - \eta) \cdot U \cdot Q \qquad \eta \equiv P^{\dagger} U_l^{\dagger} \left(-C_{H\ell}^{(3)} v^2 \right) U_l P \quad \text{Unitarity violation}$$

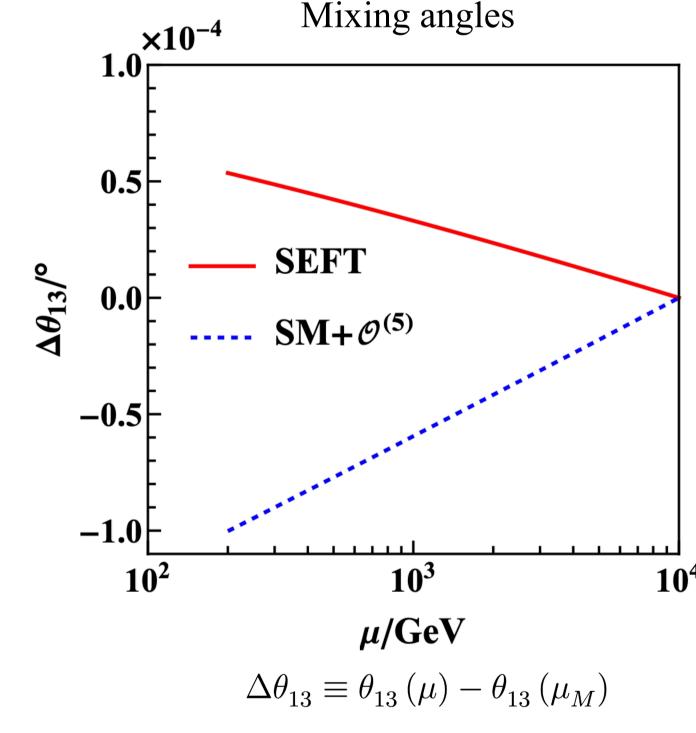
$$N \equiv (1 - \eta'/2) \cdot U \cdot Q, \quad \eta' \equiv P^{\dagger} U_l^{\dagger} \left[\left(C_{H\ell}^{(1)} - C_{H\ell}^{(3)} \right) v^2 \right] U_l P, \quad V' \stackrel{\text{def para}}{=} P \cdot U \cdot Q$$

From the RGEs in Sec. III, one can achieve RGEs of

- 1) Mixing angles and Dirac phase in *U*
- 2) Majorana phases in *Q*
- 3) Unitarity-violating parameters in η
- 4) FCNC parameters in η'

V. Examples for Numerical Results





- > All running behaviors of physical parameters can be well understood with the help of their analytical results
- > Unitarity-violating parameters can significantly affect the running of mixing angles and CP-violating phases

- > We derive the **complete** set of **one-loop RGEs** for the SM couplings and Wilson coefficients of operators up to dim-6 and $O(1/\Lambda_{SS}^2)$ in seesaw EFTs
- ➤ Besides two tree-level-generated dim-6 operators, 17 dim-6 operators can be generated by the one-loop RGEs in the type-I seesaw EFT
- > We give the explicit expressions of the RGEs of all the physical parameters involved in the charged- and neutral-current interactions of leptons
- \triangleright With the one-loop matching results at Λ_{SS} , these one-loop RGEs establish a self-consistent framework to investigate low-energy phenomena of seesaw models up to $O(1/\Lambda_{SS}^2)$ at the one-loop level