Introduction

Leptogenesis is a widely studied phenomenon to explain the observed matterantimatter asymmetry of the universe. However, it depends on high energy parameters, which could be inaccessible to probe in current or future experiments. Motivated by these constraints, we investigate the relationship between the low-energy CPviolating Dirac phase (δ) and the high-energy CP asymmetry parameter (ϵ, relevant for leptogenesis) in a Left-Right Symmetric Model (LRSM) with scalar bidoublet and doublets. We establish a novel approach to directly connect low and high-energy CP violations without employing any parametrization for M_{D}. This connection is an exciting motivation for current long baseline experiments like NOvA, T2K, DUNE and future experiments like JUNO to indirectly probe leptogenesis through δ.

Model Framework

$\mathcal{G}_{L R} \equiv S U(2)_{L} \times S U(2)_{R} \times U(1)_{B-L} \times S U(3)_{C}$
Fermion Sector

$$
q_{L}=\binom{u_{L}}{d_{L}} ; q_{R}=\binom{u_{R}}{d_{R}}
$$

$$
\ell_{L}=\binom{\nu_{L}}{e_{L}} ; \ell_{R}=\binom{N_{R}}{e_{R}}+\underbrace{S_{L}}_{\text {Singlet \& per gen }}
$$

Scalar Sector

$$
\text { Charge Conjugation: } C
$$

Double Seesaw (Neutrino Mass Generation)

Interaction Lagrangian
$\mathcal{L}_{L R D S M}=\mathcal{L}_{M_{D}}+\mathcal{L}_{M_{R S}}+\mathcal{L}_{M_{S}}$
$=-\sum_{\alpha, \beta} \overline{\nu_{\alpha L}}\left[M_{D}\right]_{\alpha \beta} N_{\beta R}-\sum_{\alpha, \beta} \overline{S_{\alpha L}}\left[M_{R S}\right]_{\alpha \beta} N_{\beta R}$
$-\frac{1}{2} \sum_{\alpha, \beta} \overline{S_{\alpha R}^{c}}\left[M_{S}\right]_{\alpha \beta} S_{\beta L}+$ h.c.
After SSB, the complete 9×9 neutral fermion mass matrix in the flavor basis of $\left(\nu_{L}, N_{R}^{c}, S_{L}\right)$

$$
\mathcal{M}_{\text {LRDSM }}=\left[\begin{array}{ccc}
\mathbf{0} & M_{D} & \mathbf{0} \\
M_{D}^{T} & \mathbf{0} & M_{R S} \\
\mathbf{0} & M_{R S}^{T} & M_{S}
\end{array}\right]
$$

Block diagonalization with the assumption $\left|M_{D}\right| \ll\left|M_{R S}\right|<\left|M_{s}\right|$, gives [1,2]

Double Seesaw (DSS) Result

$$
\begin{aligned}
& m_{\nu} \cong-M_{D}\left(-M_{R S} M_{S}^{-1} M_{R S}^{T}\right)^{-1} M_{D}^{T} \\
& m_{N} \equiv M_{R} \cong-M_{R S} M_{S}^{-1} M_{R S}^{T} \\
& m_{S} \cong M_{S}
\end{aligned}
$$

References

Deriving M_{D}

Basis Choice
In our basis, the charged lepton mass matrix is diagonal.
Light neutrino Majorana mass matrix is diagonalized with $U_{\nu} \equiv U_{P M N S}, \hat{m}_{\nu}=U_{\nu}^{\dagger} m_{\nu} U_{\nu}^{*}$.
Right handed neutrino mass matrix is diagonalized by U_{N} as $\hat{m}_{N}=U_{N}^{\dagger} m_{N} U_{N}^{*}$.

Screening

We consider the screening condition [3]:

$$
\begin{array}{r}
M_{D}=\frac{M_{R S}^{T}}{k} \rightarrow M_{S}=k^{2} m_{\nu} \\
\Longrightarrow \underbrace{U_{S}=U_{\nu} \Longrightarrow \hat{m}_{S}=U_{\nu}^{\dagger} M_{S} U_{\nu}^{*}}_{\text {screening result }}
\end{array}
$$

We have $m_{N}=-M_{R S} M_{S}^{-1} M_{R S}^{T}$.
Using screening result for M_{S} and by utilising the DSS result, we can write \hat{m}_{N} as:

$$
\hat{m}_{N}=U_{N}^{\dagger} m_{N} U_{N}^{*}=-\underbrace{U_{N}^{\dagger} M_{R S} U_{\nu}^{*}} \hat{m}_{S}^{-1} \underbrace{U_{\nu}^{\dagger} M_{R S}^{T} U_{N}^{*}}
$$

For above equation to be consistent, RHS should be diagonal. As \hat{m}_{S}^{-1} is diagonal, it implies that

$$
U_{N}^{\dagger} M_{R S} U_{\nu}^{*}=\hat{m}_{R S}
$$

We have considered \mathbf{C} symmetry as the LR discrete symmetry in our model framework, therefore M_{D} and $M_{R S}$ are symmetric matrices. This implies that $U_{N}=U_{\nu}$
We have relations: $m_{N}=-M_{R S} M_{S}^{-1} M_{R S}^{T}$ and $M_{S}=k^{2} m_{\nu}$. Thus, we get

$$
\Longrightarrow M_{R S}=m_{\nu} \sqrt{-k^{2} m_{\nu}^{-1} m_{N}}
$$

Using all the results deduced for unitary mixing matrices and extracting the square root of matrices, we get M_{D} as:

$$
\mathbf{M}_{\mathbf{D}}=\frac{1}{\mathbf{k}} \mathbf{M}_{\mathbf{R S}}=\mathbf{i} . \mathbf{U}_{\nu} \hat{\mathbf{m}}_{\nu}\left(\hat{\mathbf{m}}_{\nu}^{-1} \hat{\mathbf{m}}_{\mathbf{R}}\right)^{1 / 2} \mathbf{U}_{\nu}^{\mathbf{T}}
$$

Simplifying and rewriting in matrix form, we have

$$
M_{D}=i . U_{\nu}\left[\begin{array}{ccc}
\sqrt{m_{1} \cdot m_{N_{1}}} & 0 & 0 \\
0 & \sqrt{m_{2} \cdot m_{N_{2}}} & 0 \\
0 & 0 & \sqrt{m_{3} \cdot m_{N_{3}}}
\end{array}\right] U_{\nu}^{T}
$$

High-Low CP-Violation Connection
$\underbrace{\epsilon}_{\text {CP-Asymmetry }} \approx-\frac{3 \cdot m_{N_{1}}}{16 \pi v^{2}\left(M_{D}^{\dagger} M_{D}\right)_{11}}\left[\frac{\operatorname{Im}\left[\left(M_{D}^{\dagger} M_{D}\right)_{21}^{2}\right]}{m_{N_{2}}}+\frac{\operatorname{Im}\left[\left(M_{D}^{\dagger} M_{D}\right)_{3]}^{2}\right]}{m_{N_{3}}}\right]$

This CP-asymmetry parameter (ϵ) is the highenergy CP-violating parameter. As $U_{\nu} \equiv U_{\nu}(\delta) \Longrightarrow M_{D}(\delta) \Longrightarrow \epsilon(\delta)$. Therefore, the high-energy CP-violation is connected with the low-energy CP-violating phase (Dirac phase δ).
Dependence on Dirac Phase

Strong dependence on Dirac phase (δ) for Normal Ordering (NO) [Left Panel] and Inverted Ordering (IO) [Right Panel]. We have:
$M_{N_{2}}=1 \times 10^{k} \times M_{N_{1}}$ and $M_{N_{3}}=5 \times 10^{k} \times M_{N_{1}}$.

Dependence on Majorana Phases

Negligible dependence on Majorana Phases, so we set α and β equal to 0 ahead.

Numerical Results

We put in relevant input parameters for the NO case and choose RHN masses in GeV (for thermal unflavored leptogenesis) as:
$\mathrm{m}_{\mathrm{N}_{1}}=10^{13} ; \mathrm{m}_{\mathrm{N}_{2}}=3 \times 10^{14} ; \mathrm{m}_{\mathrm{N}_{3}}=5 \times 10^{14} ;$
With this, CP-Asymmetry comes out to be $\epsilon_{1} \approx-3.8 \times 10^{-4}$
Boltzmann Evolution \mid Sphelaron Process $Y_{\Delta \mathrm{B}} \approx 6 \times 10^{-10}$
Asymmetry evolution for the NO case

The obtained $\left(\epsilon_{1}\right)$ gives a $Y_{\Delta B}$ fairly comparable to the observational results for the NO case.
For the IO case, we obtain the $Y_{\Delta B}$ value with a negative sign $\left(Y_{\Delta B} \approx-6 \times 10^{-10}\right)$. Hence, it is ruled out for the considered parameter space.

Conclusion

1 A direct connection between low and high-energy CP violations by deriving M_{D} in the context of double-seesaw within LRSM with a small number of unknown parameters.
2 Highlights δ as the prime source for generating the required baryon asymmetry. Negligible dependence of ϵ_{1} on Majorana Phases.
3 For some other choice of input parameters, a dependence on Majorana Phases may be obtained but might deviate us from the thermal unflavored reoime I Δ motivation for fiture cronel

Acknowledgements

