Contribution ID: 174 Type: Poster

Real-time detection of Supernova Neutrinos in **XENONnT**

Tuesday, 18 June 2024 17:30 (2 hours)

XENONnT is a state-of-the-art dark matter and neutrinos experiment hosted at the Laboratori Nationali del Gran Sasso (LNGS), in Italy. In its core, the experiment runs a time projection chamber (TPC) with an active target of 5.9 t of the liquid xenon at very low background conditions and keV-level energy threshold. Although primarily developed to detect Weakly Interacting Massive Particles (WIMPs) that scatter of xenon nuclei, the detector will also be sensitive to neutrinos coming from a supernova (SN) burst, within and beyond the Milky Way. These neutrinos interact through coherent elastic neutrino-nucleus scattering (CEvNS), a flavour-blind process that enhances the number of interacting neutrinos when compared with most neutrino

vetoes of the experiment, increasing its sensitivity and discrimination potential. With its tonne-scale target, low background rate, and ancillary water-based vetoes, XENONnT is capable of actively contributing to the SuperNova Early Warning System (SNEWS). In this poster we describe the sensi-

detectors. Neutrinos from galactic SNe would also be observed in the ~700 t water-based muon and neutron

tivity to galactic and extragalactic SNe of XENONnT and the framework developed to quickly and effectively communicate any potential SN burst to the SNEWS network in a matter of minutes.

Poster prize

Yes

Given name

Ricardo

Surname

Peres

First affiliation

University of Zurich

Second affiliation

Institutional email

rperes@physik.uzh.ch

Gender

Male

Collaboration (if any)

XENON

Primary author: MOTA PERES, Ricardo José

Presenter: MOTA PERES, Ricardo José

Session Classification: Poster session and reception 1

Track Classification: Supernova neutrinos