POSSIBILITY OF THE STERILE NEUTRINO SEARCH WITH NINJA

Author

Doris Barčot

Ruđer Bošković Institute, Croatia

dbarcot@irb.hr

→ NINJA

DISAPPERANCE CH.

 $(0.95@ \nu_{\mu} \rightarrow \nu_{\mu})$

---- MicroBOONE

NINJA

INTRODUCTION

Anomalies reported in various short-baseline neutrino experiments that cannot be explained by the standard three-flavor neutrino oscillation model

New model proposition

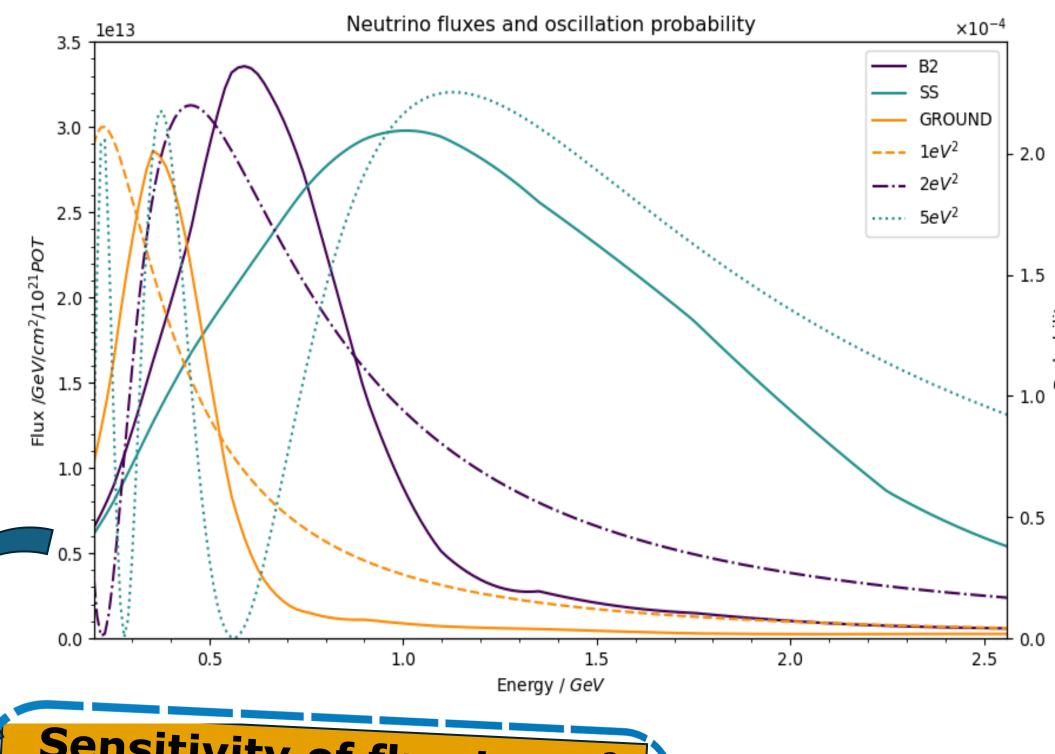
>Measures CC interactions on a water target using the **T2K neutrino beam**

NINJA EXPERIMENT

>Aiming to achieve multi-differential cross-section measurements with low momentum thresholds, down to 200 MeV/c for protons

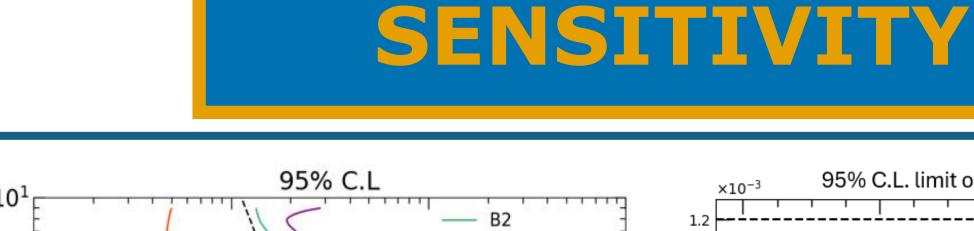
>Using an alternating structure of emulsion films and thin target layers, we can achieve clear detection of shortrange tracks from interaction vertices

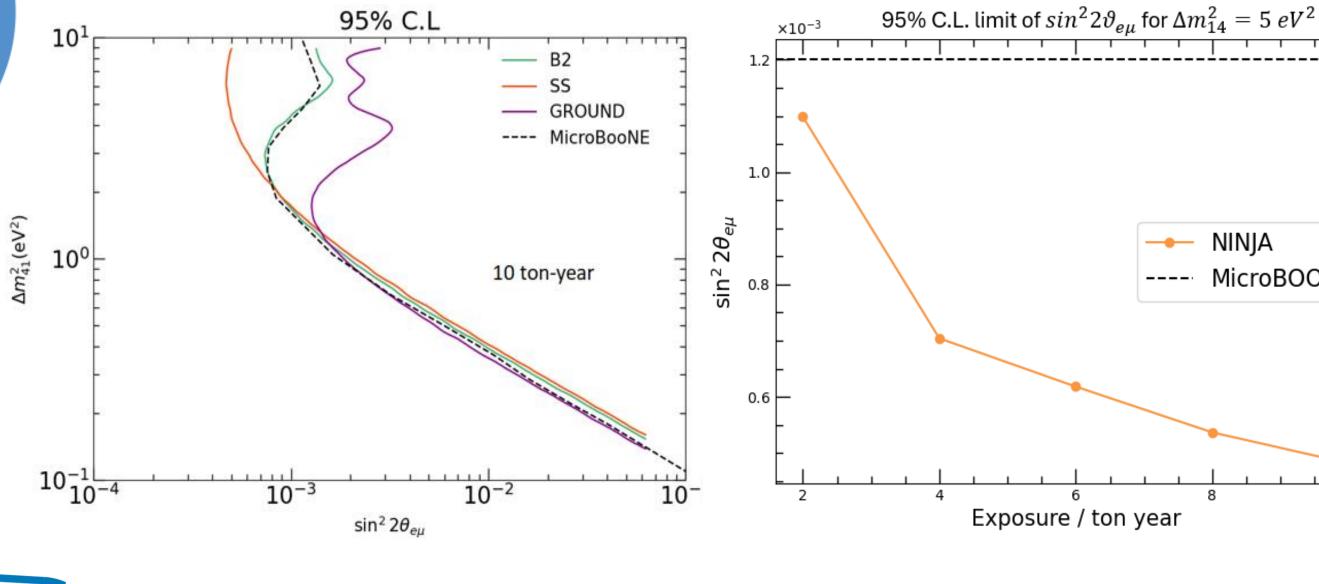
➤ More on NINJA on Friday, poster #535 by Ayaka Kasumi /


> 3+1 scenario:

> PMNS matrix update:

$$U_{PMNS}^{4\nu} = R(\theta_{34}, \delta_{34}) R(\theta_{24}, \delta_{24}) R(\theta_{14}, 0) U_{PMNS}^{3\nu}$$
 > Oscillation probability:


$$P_{\mu e} = s_{24}^2 sin^2 \theta_{24} sin^2 rac{\Delta m_{41}^2 L}{4E}$$


PROBABILITY

- >SS floor to $5 eV^2$
- >B2 floor to $2 eV^2$
- >GROUND floor to $1 eV^2$

APPERANCE CH.

 $(0.95@ \nu_{\mu} \rightarrow \nu_{e})$

Sensitivity of NINJA

>SS floor flux can give better sensitivity than current bound (above $1 eV^2$)

>Even with a small detector volume we can produce significant results

EVENT RATES

		DETECTOR - EFFICIENCY (%)	EVENTS (1 t)			DETECTOR	EVENTS (1 t)		
			B 2	SS	GR	EFFICIENCY (%)	B2	SS	GR
INTRINSIC BEAM	Ve → Ve	100	14412.4	27872.9	5759.58	/	/	/	/
$ν_\mu$ as $ν_e$	$V\mu \to V\mu$	1	8782.45	35257.2	2087.55	/	/	/	/
	$\nu_e \to \nu_\mu$	1	0.003	0.004	0.002	/	/	/	/
MISS ID	$V_{\mu} \to V_{e}$	/	/	/	/	1	0.37	0.605	0.165
ν_e as ν_μ	Ve → Ve	/	/	/	/	1	144.12	278.729	57.6
NC active ν	$V\mu \to Ve$	0.5	0.074	0.112	0.038	0.5	0.074	0.112	0.038
	$V\mu \to V\mu$	0.5	1713.43	6355.16	466.6	0.5	1713.43	6355.16	466.603
	$V\mu \to V\tau$	0.5	0.002	0.003	0.002	0.5	0.002	0.003	0.002
	$V_{\mu} \rightarrow V_{e}$	100	0.61	0.826	0.337	/	/	/	/
		100	1415.18	1656.38	642.29	/	/	/	/
WRONG SIGN	$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu}$	/	/	/	/	100	28563.8	62833.1	7954.79
	$V_e \rightarrow V_\mu$	/	/	/	/	100	0.01	0.012	800.0
SIGNAL			35.214	57.459	15.719		834333	3.349e+06	198317

Events at the detector

➤ Too much background to see a signal

➤ Possibility of altering baseline and target volume to get better results (at GROUND floor)

SUMMARY

- >NINJA has ability to constrain sterile neutrino parameters, depending on the flux
- > We have to figure out how to experimentaly take care of the backgrounds
- >The possibility of changing the baseline on the ground floor is under consideration in order to get larger signal and smaller background

REFERENCES

- > A. Hiramoto et al. [NINJA], First measurement of $\bar{\nu}_u$ and ν_u charged-current inclusive interactions on water using a nuclear emulsion detector, Phys. Rev. D 102 (2020) no.7, 072006
- > M.A. Acero et al., White Paper on Light Sterile Neutrino Searches and Related Phenomenology, Snowmass 2021