Contribution ID: 273 Type: Poster

MAGNETO-v: Neutrino Physics with Precision Pu-241 Decay Measurement

Tuesday, 18 June 2024 17:30 (2 hours)

Pu-241 is a newly proposed nuclide for studying the nature of neutrinos to complement tritium-based experiments. Pu-241 decays into Am-241 via first-forbidden non-unique beta minus decays with 20.8-keV O-value

mients. I u-241 decays into Am-241 via mst-forbidden non-dinque beta minus decays with 20.0-kev Q-value
and 14.3-year half-life, making it suitable for keV sterile neutrino search as well as active neutrinos mass
measurement. MAGNETO-v experiment uses magnetic microcalorimeters in conjunction with quantum mag-
netometers to acquire the most precise Pu-241 decay spectrum. The experiment's pure source is provided by
Lawrence Livermore National Laboratory. Our first experiment accumulated total 160 million counts above
the 3 keV threshold, which is currently the most precise Pu-241 beta decays spectrum. The data yields a
Ue4 2~1e-3 sensitivity to 10-keV neutrinos, which is compatible to the current best limit. More data acquisi-
tion is on the way and preliminary analysis results for keV neutrino and active neutrino mass will be presented.
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore Na-
tional Laboratory under Contract DE-AC52-07NA27344. This work was supported by the Laboratory Directed
Research and Development program of Lawrence Livermore National Laboratory (23-LW-043).

Poster prize

No

Given name

Chang

Surname

Lee

First affiliation

Lawrence Livermore National Laboratory

Second affiliation

Institutional email

lee1118@llnl.gov

Gender

Male

Collaboration (if any)

Primary authors: KAVNER, Alex; LEE, Chang (Lawrence Livermore National Laboratory); KIM, Geon Bo (Lawrence Livermore National Laboratory); BOYD, Stephen; PARSONS-DAVIS, Tashi; MOUGEOT, Xavier; ZHANG, Xianyi

Presenter: LEE, Chang (Lawrence Livermore National Laboratory)

Session Classification: Poster session and reception 1

Track Classification: Sterile neutrinos