Contribution ID: 16

Type: Poster

The TRISTAN detector upgrade for the keV sterile neutrino search with KATRIN

Tuesday, 18 June 2024 17:30 (2 hours)

From indirect observations of the universe, we know that at least 80 % of all matter is made of galactic dark matter. As a minimal extension to the standard model of particle physics, the so-called sterile neutrinos in a laboratory-based experiment is via tritium beta decay. A sterile neutrino with a mass of up to 18.6 keV would lead to a spectral shape distortion in the decay spectrum. A high-precision measurement of the entire decay spectrum with more than 10^{16} collected electrons is required to search for this shape distortion on the partsper-million level. This can be achieved with the high electron rates provided by the ultra-luminous tritium source of the Karlsruhe Tritium Neutrino (KATRIN) experiment. A novel multi-pixel silicon drift detector (SDD) and readout system, called the TRISTAN detector, is currently being designed to upgrade the KATRIN detector system itself is segmented into 9 identical detector modules, each hosting a monolithic SDD with 166 independent pixels. To resolve the spectral shape distortion of 300 eV (FWHM) at 20 keV and a low energy threshold of 2 keV.

This poster will give an overview of the current status of the TRISTAN detector system and the first characterization measurement results obtained with the 166-pixel modules.

This project has received funding from the European Research Council (ERC) under the European Union Horizon 2020 research and innovation program (grant agreement no. 852845).

Poster prize

Yes

Given name

Daniel

Surname

Siegmann

First affiliation

Technical University of Munich

Second affiliation

Institutional email

daniel.siegmann@tum.de

Gender

Male

Collaboration (if any)

Primary authors: SIEGMANN, Daniel (Technical University of Munich); EDZARDS, Frank

Co-authors: FIORINI, Carlo Ettore Nicola (Istituto Nazionale di Fisica Nucleare); URBAN, Korbinian (Physik-Department, Technische Universität München, Garching, Germany); CARMINATI, Marco (Istituto Nazionale di Fisica Nucleare); Dr STEIDL, Markus (KIT); Dr LECHNER, Peter (Halbleiterlabor der Max-Planck Gesellschaft); MERTENS, Susanne (TUM)

Presenter: SIEGMANN, Daniel (Technical University of Munich)

Session Classification: Poster session and reception 1

Track Classification: Sterile neutrinos