XXXI International Conference on Neutrino Physics and Astrophysics

Contribution ID: 544

Type: Poster

Measuring Solar Neutrino Oscillations in the SNO+ Detector

Friday, 21 June 2024 17:30 (2 hours)

The SNO+ experiment is a large multi-purpose neutrino detector, currently filled with liquid scintillator. For the first time in a single experiment, SNO+ is able to measure the neutrino oscillation parameters θ_{12} and Δm^2_{21} simultaneously through both reactor anti-neutrinos and Boron-8 solar neutrinos. This poster demonstrates the latter approach, with an analysis of scintillator phase data. A Bayesian statistical approach via Markov Chain Monte Carlo is used, allowing for the simultaneous fitting of the oscillation parameters, Boron-8 neutrino flux, background components with constraints, and floating systematics. A sensitivity study shows that this measurement is statistics-limited, and precision could be improved by a factor of two with two years of livetime, assuming the same backgrounds and selections.

Poster prize

Yes

Given name

Daniel

Surname

Cookman

First affiliation

King's College London

Second affiliation

Institutional email

daniel.cookman@kcl.ac.uk

Gender

Male

Collaboration (if any)

SNO+

Primary author: COOKMAN, Daniel (King's College London)Presenter: COOKMAN, Daniel (King's College London)Session Classification: Poster session and reception 2

Track Classification: Solar neutrinos