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I. Motivation

To improve energy and timing resolution with

waveform analysis,

waveformw
from PMTs in

LS detector

PE count expectation µ
event time t0
high resolution neededanalysis

FSMP is a reliable analysis method in Bayesian

sense. It deals with pile-ups, and gives better

resolution of µ and t0.
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Fig. 1: Sketch of an liquid
scintillator detector, such as JNE,

JUNO, KamLAND, Borexino.

II. Bayesian waveform analysis

p(z, t0|w) =
p(w|z, t0)p(z, t0)
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Fig. 2: Sample PEs from Poisson process
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Fig. 3: Convolve PEs into a waveform
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The event energyE and position r may be estimated by MLE:

(Ê, r̂) = arg max
E,r

p(E, r|µ, t0,w) = arg max
E,r

p(µ, t0|E, r)p(E, r)

p(µ, t0|w)

III. Charge model for MCP-PMTs
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Fig. 4: A sketch of MCP and MCPes. A PE
may go through the microchannel, or hit on

the ALD coated surface.

There are two kinds of PE in MCP-PMTs

(arXiv 2402.13266) [1]. We use a mix-

ture of multiple normal distributions to

represent the charge model.
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Fig. 5: A sketch of the charge model of an
MCP-PMT. The vertical axis represents the

number of waveforms.

IV. The MCMC steps in FSMP
Fast stochastic matching pursuit (FSMP, arXiv 2403.03156) [2, 3] supports any

charge model constructed with multiple normal distributions, including MCP-

PMTs’ charge model.
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Fig. 6: The sketch of jumps of z and sampling t0. The RJMCMC and Metropolis-Hastings
samplers are mixed with the Gibbs sampling.

V. Bias and resolution
The relative resolution of µ, and the resolution of t0 are defined as

η′ =

√
Var[µ̂]/E[µ̂]√

Var[NPE]/E[NPE]
, ηt =

√
Var[t̂0 − t0]

E[t̂0]

where NPE is number of PEs. In the most optimistic case, the resolution im-

provement of µ could be seen as the improvement of energy resolution.
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Fig. 7: The relative bias of µ̂.
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Fig. 8: The relative resolution of µ̂.

The charge method is the integration of waveforms.
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Fig. 9: The bias of t̂0.
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Fig. 10: The resolution of t̂0.

TheMCMCmethod is the upper limit of FSMP; the 1st method uses the first PE

time as event time, which is biased.

VI. GPU acceleration
FSMP is accelerated with batched algorithm on GPU: a lot of waveforms are

operated together, instead of analyzing them one by one.
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Fig. 11: A sketch of the original and the batched algorithm.
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Fig. 12: The batched method performs

∼100waveformsper secondwith batch

size ∼103 on NVIDIA®A100, and it is

faster than original algorithmonCPUby

more than 2 orders of magnitude.

VII. Summary
•Better energy resolution: up to (12.2± 1.4)% better (µ = 1).

•Better timing resolution: unbiased, (37.5± 1.8)% better (µ = 1).

•High performance: ∼100waveforms per second,∼1000 times faster on con-

sumer GPUs than CPUs.
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