Evaluation of the Position and Direction Dependence of the Energy Scale Using the Decay of ¹⁶N at Super-Kamiokande

Saki Fujita, Yuuki Nakano, George Burton, and Mark Vagins for the Super-Kamiokande Collaboration June 16-22, 2024 Milan, Italy

saki.fujita@ipmu.jp

We Are Not Yet Done With Solar Neutrinos | Methods

 Since the beginning of data taking, Super-Kamiokande (SK) has been conducting ground-breaking studies of solar neutrinos [1].

NEUTRINO 2024

0

 All measurements to date are consistent with solar neutrino flavor change due

···· 🔅 · ·· 🔅 · · 🔅

SK Inner

Detector

80 100 120 140 160 180 200 220

to matter enhanced neutrino oscillations [Poster #512].

So, What's the Matter?

 Well, a key phenomena yet to be observed is the energy dependence in the electron neutrino survival probability, driven by matter effects in the Sun (also called the "spectral upturn").

Neutrino energy [MeV]

9-to-5 as an Experimentalist: Calibration!

- Of course, this is not entirely true, but precise energy calibration is essential to reach the required sensitivities for the solar neutrino spectral upturn.
- A typical low-energy event (3.5-100 MeV) records 1 hit per PMT

Data

- 1. Apply basic cuts
 - Energy cut
 - Distance from wall and DTG
- 2. Background subtraction

- 12…

For each firing, subtract the last 20 sec (bkgd-dominant) from the first 20 sec (signal-dominant)

MC Simulation

3. Generate electron and γ at the same position as the data sample

Calibration Parameter

4. Take the mean value of the number of effective hits and its data-MC ratio: (Data-MC)/MC [%]

Results

Number of Effective Hits (Neff)

• The energy of low-energy events is reconstructed based on the number of PMT hits alone, that is further converted into an **effective number of hits**:

 How much this energy reconstruction varies based on interaction positions and directions in the detector is considered the systematic uncertainty of the energy scale.

¹⁶N as a Calibration Source

SK Operational Phases

[1] K. Abe et al., Phys. Rev. D 109, 092001
[2] E. Blaufuss et al., Nucl. Instrum. Meth. A 458, 638 (2001)
[3] S. Agostinelli et al., Nucl. Instrum. Meth. A 506 (2003)

Uncertainty	SK-V	SK-VI	SK-VII
Direction Dependence	± 0.10%	± 0.12%	± 0.11%
Position Dependence	± 0.29%	± 0.38%	± 0.24%

Summary

Energy calibration using ¹⁶N events was performed in the pure-water and gadolinium-loaded phases of Super-Kamiokande. Systematic uncertainties of the energy scale were evaluated to be up to 0.4% for the position dependence and up to 0.2% for the direction dependence. These results are comparable to the level obtained in the previous phases and can be further reduced to observe the long-sought-after solar neutrino matter effects.