
6. Prospects For DUNE
Neutron capture events will serve as a standard-candle, energy calibration 
source.

Collectively, these efforts will aid in understanding the neutron detector 
response over a wide range of energies and will be critical for improving 

DUNE’s energy reconstruction.
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• Near Detector (ND) at Fermilab will sample 𝜈 beams near production point
• Far Detector (FD) 1.5 km underground in Lead, South Dakota will record 𝜈 

interactions to search for Charge-Parity Violation (CPV) in the 𝜈-sector, 
measure the 𝜈 mass hierarchy, and detect supernovae as well as solar 𝜈s.

• Two, 770-ton prototypes at CERN, ProtoDUNE Horizontal Drift (HD) and 
Vertical Drift (VD), are testbeds for full-scale DUNE technology.

1. The Deep Underground Neutrino Experiment
DUNE is poised to answer some of the deepest questions about our universe 
through high-precision measurements of the properties of neutrinos (𝜈).

Figure 1. The Deep Underground Neutrino 
Experiment (DUNE), a long-baseline neutrino 

oscillation experiment

3. Neutron Production in ProtoDUNE
Test-Beam: Charged particles with selected momentum 
between 0.3 and 7 GeV/c.
Selection: Disjoint protons produced by candidate 
neutrons in coincidence with the reconstructed beam 
particle candidates

4. Cross Section Measurement in ProtoDUNE

• Best fit result from ProtoDUNE suggests higher than 
nominal neutron cross section in Argon

• Multiplicity studies and measurements at higher 
momenta ongoing

Figure 4. Energy 
uncertainty resolutions 

for DUNE by particle 
type. 

Challenges:
• Wide-band energy 𝜈/𝜈̅ beams

• (100 MeV – 10 GeV) 
• Unprecedented requirements on energy
    and position resolution
• Neutrons transport energy away from the neutrino
    vertex and from subsequent interactions of primary component hadrons

• Can interact far form the vertex or escape completely

2. DUNE Challenges And Requirements
At a nominal 70 kt of Liquid Argon (LAr), DUNE’s far detector will be the 
largest LAr Time Projection Chamber (LArTPC)-based neutrino observatory.

Figure 3. Effects of 
missing energy on 
the measurement of 
CPV and 𝞱13
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5. Transmission Experiments

Figure 13. Hit rates in 
ProtoDUNE Run 1 with 

PNS on/off.

Figure 15. Simulated DUNE FD coverage for one module 
and a single PNS. Side view.

Pulsed Neutron Source 
(PNS):
• Neutrons can travel long 

distances and produce a 6.1 
MeV 𝛾-cascade upon capture 
on 40Ar

• Deuterium-Deuterium 
Generator (DDG)

• PNS first deployed in 
ProtoDUNE Run 1
• Improved design will be 

tested in Run 2

Figure 
14. PNS 
system

There are ongoing efforts to make direct measurements of the neutron-Argon 
total cross section using facilities at the Los Alamos Neutron Science CEnter 
(LANSCE) and at CERN’s neutron Time-Of-Flight (nTOF) facility.

• Argon gas bottle at 200 bar, utilized 
to measure neutron cross sections
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Figure 2. Neutron production in 
a neutrino event

Figure 5. ProtoDUNE 
detector
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Figure 7. Variation of neutron inelastic 
cross section and fitting method.

Methodology: Generate probability 
distribution functions (p.d.f.s) for the radial 
displacement of the candidate protons 
and utilize a maximum likelihood method 
to fit to the data with variations of the 
nominal inelastic cross section in Geant4.
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• 2-meter LAr target will be 
deployed at LANL to measure σtot

• “Binocular” setup allows for 
simultaneous measurement of 
target-in and target-out
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Figure 12. nTOF facility, located at CERN.

• 10 cm LAr target being 
fabricated at Los Alamos

    for deployment at nTOF in 2025

Figure 13. 
nTOF target 
station (left). 
New LAr 
target 
(bottom).

1 GeV/c data analyzed for the cross section fit of the n-Ar inelastic cross 
section.

Flight Path 13

Figure 11. ARTIE-II target to be 
used at the DICER facility at 
LANSCE.
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Figure 6. Neutron candidate 
event in run 5387.
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Figure 10. Results from the 
ARTIE-I 2019 Run

Figure 9. Neutron 
transmission for a 1, 
15, and 200 cm liquid 
Argon target

Figure 8. Best fits to the 1 GeV/c (data) candidate selection.
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