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1. The Deep Underground Neutrino Experiment

DUNE is poised to answer some of the deepest questions about our universe
through high-precision measurements of the properties of neutrinos (v).

Figure 1. The Deep Underground Neutrino
Experiment (DUNE), a long-baseline neutrino
Sanford Underground OSCi||ati0n experiment
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* Near Detector (ND) at Fermilab will sample v beams near production point
* Far Detector (FD) 1.5 km underground in Lead, South Dakota will record v
interactions to search for Charge-Parity Violation (CPV) in the v-sector,

measure the v mass hierarchy, and detect supernovae as well as solar vs.
« Two, 770-ton prototypes at CERN, ProtoDUNE Horizontal Drift (HD) and

Vertical Drift (VD), are testbeds for full-scale DUNE technology.

between 0.3 and 7 GeV/c.

Test-Beam: Charged particles with selected momentum

Selection: Disjoint protons produced by candidate
neutrons in coincidence with the reconstructed beam

particle candidates

Figure 5. ProtoDUNE
detector

Methodology: Generate probability

distribution functions (p.d.f.s) for the radial
displacement of the candidate protons |
and utilize a maximum likelihood method e e
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Figure 6. Neutron candidate

nominal inelastic cross section in Geant4. event in run 5387.

5. Transmission Experiments

There are ongoing efforts to make direct measurements of the neutron-Argon
total cross section using facilities at the Los Alamos Neutron Science CEnter

(LANSCE) and at CERN'’s neutron Time-Of-Flight (nTOF) facility.
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Figure 10. Results from the
Argon ARTIE-I 2019 Run

« 2-meter LAr target will be
deployed at LANL to measure o,

« “Binocular” setup allows for
simultaneous measurement of

target-in and target-out
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Figure 11. ARTIE-I| target to be * 10 cm LAr target being
used at the DICER facility at fabricated at Los Alamos
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Figure 12. nTOF facility, located at CERN.

* Argon gas bottle at 200 bar,
to measure neutron cross sections

utilized

Figure 13.
NnTOF target

station (left).
" New LAr

LANSCE. for deployment at nTOF in 202

2. DUNE Challenges And Requirements

At a nominal 70 kt of Liquid Argon (LAr), DUNE’s far detector will be the
largest LAr Time Projection Chamber (LArTPC)-based neutrino observatory.
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4. Cross Section Measurement in ProtoDUNE
1 GeV/c data analyzed for the cross section fit of the n-Ar inelastic cross
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Figure 7. Variation of neutron inelastic

cross section and fitting method.

» Best fit result from ProtoDUNE suggests higher than

nominal neutron cross section in Argon
* Multiplicity studies and measurements at higher
momenta ongoing

6. Prospects For DUNE
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Neutron capture events will serve as a standard-candle, energy calibration

source. P ———
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* Neutrons can travel long AN
distances and produce a 6.1 |«
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* Deuterium-Deuterium
Generator (DDG)
* PNS first deployed in
ProtoDUNE Run 1
* Improved design will be
tested in Run 2
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Figure 15. Simulated DUNE FD coverage for one module
and a single PNS. Side view.

Collectively, these efforts will aid in understanding the neutron detector
response over a wide range of energies and will be critical for improving

DUNE'’s energy reconstructio
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