ID-488 First measurement of the yield of ⁸He isotopes produced in liquid scintillator by cosmic-ray muons at Daya Bay

arXiv:2402.05383

Resume https://drive.google.com/drive/folders/ 1Qym5u2oD3xbLvRgPfBCICEQZc2QEuKy4

yuanchengzhuo@ihep.ac.cn Institute of High Energy Physics, Beijing (On behalf of the Daya Bay Collaboration)

Introduction

Production of cosmogenic ⁸He

⁸He/⁹Li: critical backgrounds for IBD ($\overline{v_e}$)

1. Mimic IBD events: β-neutron decay branch **2. Long lifetime:** ⁸He~172ms, ⁹Li~257ms **3. Similar energies:** IBD~8MeV, ⁸He/⁹Li~10MeV

Previous measurement

Yield (Y), a quantity characterizing the probability of isotope production, is similar to production cross section

Measured yields:

(generally using the β -n decay branch)

- ⁸He consistent with zero within 2σ level
- ⁹Li with precision of about 10%

Simulation:

 ⁸He yield is at least 10 times lower than other cosmogenic isotopes

An Innovative Method for ⁸He Selection Identifying cascade decay of ⁸He and child ⁸Li (ground state)

70

β-β cascade decay: ⁸He-⁸Li^{g.s.}

- \succ β - β temporal and spatial coincidence
 - time interval of ⁸He and ⁸Li^{g.s.} ~1s
 - highly localized lacksquare
- Higher branching ratio ~84%

Fit for ⁸He-⁸Li^{g.s.} enriched samples

- > Two fit with consistent results
 - 2D fit for distance of ⁸He-⁸Li^{g.s.} and ΔT of ⁸He and muon

70 L 💺

• 2D fit for energy of ⁸He and ΔT of ⁸He and muon

cosmogenic ⁸He existence at 11.4σ level

Measurement for ⁹Li

Utilizing β-n decay branch Method 1:

- 2D fit for energy (${}^{9}Li$) and ΔT (${}^{9}Li$ -muon)
- ⁹Li in low S/B samples limited by dR (⁹Li β-n)

Method 2:

- 3D fit for ΔT (⁹Li-muon), vertical position, and reactor power

⁹Li in low S/B samples obtained by

i H Data ⁹Li ${}^{12}\text{B}{}^{-12}\text{B}$ 100 200 400 10 20 40 $\Delta T [ms]$ 2D fit of Method 1 E_p [MeV]

Results

1. First measurement of cosmogenic ⁸He in liquid scintillator

- ⁸He yields with precision of about 14%
- ⁸He yield is more than an order of magnitude lower than any other measurement of cosmogenic isotope
- 2. Ratio of ⁸He and ⁹Li yields in three underground experimental halls (EHs) at Daya Bay

Simulation

FLUKA and four models of GEANT4

- ⁸He: simulated yields are more than twice larger than measurements
- ⁹Li: simulated yields differed from measurements by 10-30%

- $R_{EH1} = 4.56 \pm 0.80\%$
- $R_{EH2} = 5.05 \pm 0.79\%$
- $R_{EH3} = 3.97 \pm 0.60\%$

3. Isotopic yield with respect to muon energy

- $Y = Y_0 * (E_{avg}^{\mu} / 1GeV)^{\alpha}$, Y_0 in unit of $10^{-9} \mu^{-1} g^{-1} cm^2$
- **BHe at Daya Bay:** $Y_0 = 0.21^{+0.34}_{-0.13}$, $\alpha = 0.65 \pm 0.22$
- ⁹Li at five experiments: $Y_0 = 3.3 \pm 0.7$, $\alpha = 0.76 \pm 0.05$

References [1] Luu T, Hagmann C. OSTI.GOV, 2006. [2] Lee H G, et al. Phys. Rev. D, 2022, 106(1): 012005.

[3] Tilly D R, et al. Nuclear Physics A, 2004, 745(3): 155-362. [4] An F P, et al. Phys. Rev. Lett., 2023, 130(16): 161802. [5] An F P, et al. Phys. Rev. Lett., 2022, 129(4): 041801.