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BIG DETECTORS FOR RARE PHENOMENA

The search for ever-rarer phenomena and the need for ever-higher statistics and
precision led to the construction of larger detectors and to new challenges:

1. Detectors with complex responses and inhomogeneous events’ distributions
2. Increasing number of events that must be efficiently analyzed.

JUNO, used here as a case study, is expected to collect 2PB/year
New flexible and efficient approaches are needed to

analyze this next generation of neutrino physics data.

Unbinned likelihood and its computational optimization
can be a practical solution to these challenges.
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GPU PARALLELIZATION

The likelihood is approached through its logarithm. Integrals are computed as finite
sums. The calculation simplifies to a form easily parallelizable on CPU and GPU:

UNBINNED LIKELIHOQOD

Unbinned likelihood can easily incorporate events’ features
like energy, position and time, for a more flexible analysis

tuned on an event-by-event basis: _ ) )
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It is possible to characterize in p(E, 7, t| ¢) the space- and
time-dependent detector response and the distributions
of sighal and background events. As an example:
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The explicit expression for evaluating the v, model PDF
convoluted with the detector response for a given event is:
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*The inputs and results used are not intended to be representative of JUNO and its sensitivity. The case study is intended to demonstrate the potential benefits of the developed methodology. The rates, spectral shapes and distributions of the events are also not representative of JUNO.
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