Contribution ID: 347

Tagging Correlated Events in a Small-Scale Liquid Scintillator Detector

Tuesday, 18 June 2024 17:30 (2 hours)

This contribution focuses on a small-scale liquid scintillator detector, serving as a test setup for the Jiangmen Underground Neutrino Observatory (JUNO) experiment. JUNO is a next-generation medium baseline neutrino experiment located in China. The experiment has a broad physics program and the main goals are to determine the neutrino mass ordering and measure three oscillation parameters with sub-percent precision. JUNO's central detector is an acrylic sphere ~35.4 meters in diameter filled with 20 kt of liquid scintillator. It is equipped with 43212 photomultiplier tubes (PMTs) providing ~75% of photo-coverage. As the detector approaches its final commissioning phase, comprehensive testing of various components of the experiment is crucial.

The presented test setup, located at Legnaro National Laboratory in Italy, consists of \sim 20 kg of JUNO liquid scintillator watched by 48 2-inch PMTs. This setup is equipped with JUNO's readout electronics and data acquisition (DAQ) and it was mainly designed as a test-bench for the full processing chain.

In this contribution, we present preliminary results on the feasibility of tagging time-correlated events, exploiting the 214 Bi- 214 Po β - α coincidence.

To ensure accurate energy measurements, we performed an energy calibration using several radioactive sources. The calibration procedure establishes a precise energy scale, essential for subsequent analyses.

 $^{214}\text{Bi-}^{214}\text{Po}$ coincidences, characterized by a time difference of approximately 230 μ s, close to the timing of JUNO's main signal, inverse beta decay events, provide an opportunity to test part of the selection strategy. The results show approximately 10 thousand $^{214}\text{Bi-}^{214}\text{Po}$ candidates acquired after ~ 15 hours of data acquisition.

Poster prize

Yes

Given name

Arsenii

Surname

Gavrikov

First affiliation

INFN-Padova

Second affiliation

University of Padova

Institutional email

arsenii.gavrikov@pd.infn.it

Gender

Male

Collaboration (if any)

Primary authors: GAVRIKOV, Arsenii (Istituto Nazionale di Fisica Nucleare); CERRONE, Vanessa (Istituto Nazionale di Fisica Nucleare)

Presenters: GAVRIKOV, Arsenii (Istituto Nazionale di Fisica Nucleare); CERRONE, Vanessa (Istituto Nazionale di Fisica Nucleare)

Session Classification: Poster session and reception 1

Track Classification: Reactor neutrinos