Status and perspective of long-lived particle searches in ATLAS

Giuliano Gustavino

27 November 2023

The time dimension

ATLAS was not initially conceived to search for long-lived particles...

G. Gustavino

...but they are all around us!

Why long-lived particles?

Standard Model

Feeble Coupling

e.g. b \rightarrow clv, off-diagonal CKM, $\tau \sim$ ps

Mass Scale suppression

e.g. $\mu \rightarrow ev_{\mu}v_{e}$, via W-boson, $\tau \sim 1.6 \ \mu s$

Phase space suppression

e.g. $n \rightarrow pe^{-v}$, $m_n - m_p \sim 1$ MeV, $\tau = 15$ min

decay rate ~ coupling² · mass dimension · phase space

Beyond the Standard Model

		Small coupling	Small phase space	Scale suppression
SUSY	GMSB			\checkmark
	AMSB		\checkmark	
	Split-SUSY			\checkmark
	RPV	\checkmark		
NN	Twin Higgs	\checkmark		
	Quirky Little Higgs	\checkmark		
	Folded SUSY		\checkmark	
DM	Freeze-in	\checkmark		
	Asymmetric			\checkmark
	Co-annihilation		\checkmark	
Portals	Singlet Scalars	\checkmark		
	ALPs			\checkmark
	Dark Photons	\checkmark		
	Heavy Neutrinos			\checkmark

A plethora of signatures

ATLAS has led an extensive search program for LLPs

signature-inspired
rather than
model-inspired
searches
whenever possible

Disclaimer:

I don't wish to cover everything about the LLP search program in ATLAS. I am just diving into some bits often using Rome1 and Rome1 expats' studies as examples.

quasi-stable charged particles

G. Gustavino

displaced leptons, lepton-jets

displaced multitrack vertices

multitrack vertices in the muon spectrometer

trackless, low-EMF jets disappearing or kinked tracks

non-pointing photons

emerging jets

Dark Sectors

Simplified benchmarks are often used to allow a reinterpretation in more complete, complex and novel theories

G. Gustavino

scalar portal

vector portal

neutrino portal

Decay length

Any given particle's lifetime follows an exponential distribution: particles with a short proper lifetime can decay with a large lab-frame distance

- all subdetectors must be used for optimal results *
- **prompt** and **invisible** final states searches can play a fundamental role! *

distance travelled

distance travelled

The ATLAS Detector

Triggering

- O trigger systems (especially Level-1) usually do not have sufficient information to tag LLP particle/decay often used standard 'prompt' physics trigger (e.g. ISR jet, MET*, prompt leptons) reducing sensitivity and increasing model dependence of results

*Missing transverse energy: momentum imbalance on the transverse plane

Triggering

- O trigger systems (especially Level-1) usually do not have sufficient information to tag LLP particle/decay often used standard 'prompt' physics trigger (e.g. ISR jet, MET*, prompt leptons) reducing sensitivity and increasing model dependence of results

Reconstruction

* Non-standard reconstruction needed

*Missing transverse energy: momentum imbalance on the transverse plane

Triggering

- O trigger systems (especially Level-1) usually do not have sufficient information to tag LLP particle/decay often used standard 'prompt' physics trigger (e.g. ISR jet, MET*, prompt leptons) reducing sensitivity and increasing model dependence of results

Reconstruction

* Non-standard reconstruction needed

Background estimation

- Unusual background sources
- Data-driven approach is adopted usually cannot rely on simulation

*Missing transverse energy: momentum imbalance on the transverse plane

10

Triggering

- O trigger systems (especially Level-1) usually do not have sufficient information to tag LLP particle/decay often used standard 'prompt' physics trigger (e.g. ISR jet, MET*, prompt leptons)
- reducing sensitivity and increasing model dependence of results

Reconstruction

* Non-standard reconstruction needed

Background estimation

- Unusual background sources
- Data-driven approach is adopted usually cannot rely on simulation

*Missing transverse energy: momentum imbalance on the transverse plane

material interactions

11

Triggering

- O trigger systems (especially Level-1) usually do not have sufficient information to tag LLP particle/decay often used standard 'prompt' physics trigger (e.g. ISR jet, MET*, prompt leptons)
- reducing sensitivity and increasing model dependence of results

Reconstruction

* Non-standard reconstruction needed

Background estimation

- Unusual background sources
- Data-driven approach is adopted usually cannot rely on simulation

*Missing transverse energy: momentum imbalance on the transverse plane

material interactions

Beam induced background

Triggering

- O trigger systems (especially Level-1) usually do not have sufficient information to tag LLP particle/decay often used standard 'prompt' physics trigger (e.g. ISR jet, MET*, prompt leptons)
- reducing sensitivity and increasing model dependence of results

Reconstruction

* Non-standard reconstruction needed

Background estimation

- Unusual background sources
- Data-driven approach is adopted usually cannot rely on simulation

*Missing transverse energy: momentum imbalance on the transverse plane

Triggering

- O trigger systems (especially Level-1) usually do not have sufficient information to tag LLP particle/decay often used standard 'prompt' physics trigger (e.g. ISR jet, MET*, prompt leptons)
- reducing sensitivity and increasing model dependence of results

Reconstruction

* Non-standard reconstruction needed

Background estimation

- Unusual background sources
- Data-driven approach is adopted usually cannot rely on simulation

Estimation of signal efficiency

□ Often not possible, as no SM standard candle giving sufficiently LLP signatures / decay signatures

G. Gustavino

*Missing transverse energy: momentum imbalance on the transverse plane

Higgs / scalar portal

Scalar portal

Benchmark model showing a nice interplay by different signatures which exploit the potential of the subdetectors and different reconstruction strategies.

S

s

Η

ISR jet + MET (mono-jet)

16

Scalar portal

Benchmark signature showing a nice interplay by different signatures which exploit the potential of the subdetectors and different reconstruction strategies.

H

Search for LLP in ID

Search of displaced vertices in the ID *****ZH production • to exploit the lepton triggers

select events with

displaced jet candidates

* based on tracks information

Key selection variables: * n_{trk} per vertex * $m/\Delta R_{max}$ reduced mass

ratio of reco vertex

invariant mass and ΔR_{max} (track, DV)

G. Gustavino

VH4b LLP: JHEP 11 (2021) 229

displaced vertex (DV)

select large-radius tracks exploiting a dedicated reconstruction algorithm

reconstruct 2 displaced vertices in the ID matched to jets

Data-driven bkg estimate

- bkg from Z+jets
- * per-jet probability of DVs in CR
- ***** B = $1.30 \pm 0.08 \pm 0.27$

No events observed in the signal region

$H \rightarrow aa - LLP$ in Calorimeter

Searching for displaced jets in the calorimeter system

Dedicated triggers exploiting E_H / E_{EM}

+ BIB-enriched sample for the bkg estimation

* displaced jet tagger based on NN

- based on tracks, topoclusters, muon segments
- adversary NN to mitigate MC mismodeling
- * per-event BDT discriminant
 - BIB, multijet vs signal

Data-driven ABCD method to estimate the bkg

JHEP 06 (2022) 005

$H \rightarrow aa - DV in MS$

Searching for narrow, high multiplicity hadron showers in MS no matched tracks in the ID

Dedicated Trigger

* events w/ a cluster of \geq 3 (4) ROIs in the barrel (EC)

G. Gustavino

Dedicated Vertex algorithm

* reco vertices with ≥ 3 (4) tracklets in the barrel (EC)

Estimated from main & zero-bias stream $N_{2Vr} = 0.32 \pm 0.05$ No observed events

Exotics $H \rightarrow ss$ decays: now

G. Gustavino

LLP summary plots: ATL-PHYS-PUB-2022-007

21

Vector portal

Dark Photons

Dark sector containing a dark abelian gauge group $U(1)_D$ Dark photon mixes with the SM photon

flavour decays

dark photon mass

Displaced lepton jets

Search for light LLPs decaying into collimated jet structures of leptons or light hadrons

Collimated bunch of muons w/o tracks in the ID

- o Low-p⊤ muons hard to trigger
- o Cosmic-ray muons bkg

G. Gustavino

ggF & WH & VBF productions

Displaced jet with most of energy deposit in the HCAL

o High bkg from QCD events

Dense NN-based (per track) tagger in **µ-channels** to reject cosmics

Convolutional NN-based taggers in calo-channels to reject QCD and BIB

trained on low-level inputs (3D jet images from calorimetric clusters)

Dark Photons summary

Hinv combination 0

G. Gustavino

ATL-PHYS-PUB-2022-007 JHEP 06 (2023) 153

- Vector-Portal-only limits **Prompt-lepton jets**
- standard e/µ triggers
- * e, μ and mixed channels
- * ongoing based on full Run-2 data 25

LLP summary plots

ATLAS Long-lived Particle Searches* - 95% CL Exclusion

Status: March 2023 $\int \mathcal{L} dt \, [fb^{-1}]$ Signature Model RPV $\tilde{t} \rightarrow \mu q$ displaced vtx + muon 136 t lifetime ${ ilde \chi}^0_1$ lifetime $\operatorname{RPV} \tilde{\chi}_1^0 \to eev/e\mu v/\mu\mu v$ displaced lepton pair 32.8 ${ ilde \chi}_1^0$ lifetime $\operatorname{RPV} \tilde{\chi}_1^0 \to qqq$ displaced vtx + jets 139 ${ ilde \chi}^0_1$ lifetime $\operatorname{GGM} \tilde{\chi}_1^0 \to Z \tilde{G}$ displaced dimuon 32.9 $\tilde{\chi}_{1}^{0}$ lifetime GMSB non-pointing or delayed γ 139 displaced lepton GMSB $\tilde{\ell} \to \ell \tilde{G}$ 139 $\tilde{\ell}$ lifetime SUSY GMSB $\tilde{\tau} \rightarrow \tau \tilde{G}$ displaced lepton 139 r lifetime $\tilde{\chi}_1^{\pm}$ lifetime AMSB $pp \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_1^0, \tilde{\chi}_1^{\pm} \tilde{\chi}_1^{-}$ disappearing track 136 AMSB $pp \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_1^0, \tilde{\chi}_1^{\pm} \tilde{\chi}_1^{-}$ $\tilde{\chi}_1^{\pm}$ lifetime large pixel dE/dx 139 Stealth SUSY 2 MS vertices 36.1 **Š** lifetime Split SUSY large pixel dE/dx 139 g lifetime displaced vtx + E_{T}^{miss} Split SUSY 32.8 **g** lifetime Split SUSY 0ℓ , 2 – 6 jets + $E_{\rm T}^{\rm miss}$ 36.1 lifetime $H \rightarrow s s$ 2 MS vertices 139 s lifetime 2 low-EMF trackless jets 139 $H \rightarrow s s$ s lifetime 10, VH with $H \rightarrow ss \rightarrow bbbb$ $2\ell + 2$ displ. vertices 139 s lifetime $\gamma_{\rm d}$ lifetime BR FRVZ $H \rightarrow 2\gamma_d + X$ 2μ -jets 139 Higgs FRVZ $H \rightarrow 4\gamma_d + X$ 2 μ –jets 139 γ_{d} lifetime $H \rightarrow Z_d Z_d$ displaced dimuon 32.9 Z_d lifetime $H \rightarrow ZZ_d$ 2 e, μ + low-EMF trackless jet 36.1 Z_d lifetime $\Phi(200 \text{ GeV}) \rightarrow ss$ low-EMF trk-less jets, MS vtx 36.1 s lifetime calar $\Phi(600 \text{ GeV}) \rightarrow ss$ low-EMF trk-less jets, MS vtx 36.1 s lifetime $\Phi(1 \text{ TeV}) \rightarrow ss$ low-EMF trk-less jets, MS vtx 36.1 s lifetime $W \to N\ell, N \to \ell\ell\nu$ displaced vtx ($\mu\mu$, μe , ee) + μ 139 N lifetime $W \to N\ell, N \to \ell\ell\nu$ displaced vtx ($\mu\mu$, μe , ee) + μ 139 N lifetime $W \to N\ell, N \to \ell\ell\nu$ displaced vtx ($\mu\mu,\mu e, ee$) + e 139 HNI N lifetime displaced vtx ($\mu\mu$, μe , ee) + e 139 N life<mark>time</mark> $W \to N\ell, N \to \ell\ell\nu$

 $\sqrt{s} = 13$ TeV \sqrt{s} partial data fu

√s = 13 TeV full data

G. Gustavino

*Only a selection of the available lifetime limits is shown. 0.001

0.01

.

0.001

ATL	.AS	Preliminary
2.8 – 139) fb ⁻¹	1	<i>√s</i> = 13 TeV

 $\int \mathcal{L} dt = (32.8 - 139) \text{ fb}^{-1}$

Lifetime	limi	t			
••••••	-	1	-	Т	Т

me limit			Reference
	0.003-6.0 m	$m(\tilde{t}) = 1.4 \text{ TeV}$	2003.11956
i and the second se	0.003-1.0 m	$m(ilde{q}){=}$ 1.6 TeV, $m(ilde{\chi}_1^0){=}$ 1.3 TeV	1907.10037
	0.00135-9.0 m	$m({ ilde \chi}_1^0){=}$ 1.0 TeV	2301.13866
	0.029-18.0 n	$m(\tilde{g}) = 1.1 \text{ TeV}, \ m(\tilde{\chi}_1^0) = 1.0 \text{ TeV}$	1808.03057
	0.24-2.4 m	$m(ilde{\chi}_1^0, ilde{G})$ = 60, 20 GeV, $\mathcal{B}_{\mathcal{H}}$ = 2%	2209.01029
i a contra da co	6-750 mm	$m(ilde{\ell}){=}$ 600 GeV	2011.07812
9-27	<mark>0 mm</mark>	$m(ilde{\ell}){=}$ 200 GeV	2011.07812
	0.06-3.06 m	$m({ ilde \chi}_1^{\pm}){=}$ 650 GeV	2201.02472
	0.3-30.0 m	$m({ ilde \chi}_1^{\pm}){=}$ 600 GeV	2205.06013
	0.1-519 m	$\mathcal{B}(\tilde{g} \rightarrow \tilde{S}g) = 0.1, m(\tilde{g}) = 500 \text{ GeV}$	1811.07370
	> 0.45 m	$m(ilde{g})=$ 1.8 TeV, $m(ilde{\chi}_1^0)=$ 100 GeV	2205.06013
	0.03-13.2 m	$m(ilde{g}){=}$ 1.8 TeV, $m(ilde{\chi}_1^0){=}$ 100 GeV	1710.04901
	0.0-2.1 m	$m(ilde{g}){=}$ 1.8 TeV, $m(ilde{\chi}_1^0){=}$ 100 GeV	ATLAS-CONF-2018-00
	0.31-72.4 m	<i>m</i> (<i>s</i>)= 35 GeV	2203.00587
	0.19-6.94 m	<i>m</i> (<i>s</i>)= 35 GeV	2203.01009
4-85 mm		<i>m</i> (<i>s</i>)= 35 GeV	2107.06092
	0.654-939 mm	$m(\gamma_d) =$ 400 MeV	2206.12181
	2.7-534 mm	$m(\gamma_d) =$ 400 MeV	2206.12181
0.009-24.0 m		$m(Z_d) = 40 \text{ GeV}$	1808.03057
	0.21-5.2 m	$m(Z_d) = 10 \text{ GeV}$	1811.02542
	0.41-51.5 m	$\sigma imes \mathcal{B} = 1$ pb, $m(s) = 50$ GeV	1902.03094
0.04-21.	5 m	$\sigma imes \mathcal{B} =$ 1 pb, $m(s) =$ 50 GeV	1902.03094
0.06	i-52.4 m	$\sigma imes \mathcal{B} =$ 1 pb, $m(s) =$ 150 GeV	1902.03094
0.74-42 mm		m(N) = 6 GeV, Dirac	2204.11988
3.1-33 mm		m(N)= 6 GeV, Majorana	2204.11988
0.49-81 mm		m(N) = 6 GeV, Dirac	2204.11988
0.39-51 mm		m(N) = 6 GeV, Majorana	2204.11988
D.01 0.1	1 10	¹⁰⁰ cτ [m]	

au [ns]

TRACKING Long-Lived particles

Large-radius tracking in a nutshell

Standard Tracking (STD) optimised to reconstruct prompt tracks in the ID

G. Gustavino

arXiv:2304.12867

Large-radius tracking in a nutshell

Standard Tracking (STD) optimised to reconstruct prompt tracks in the ID

Large-Radius Tracking (LRT) developed to capture the discarded interesting physics (e.g. LLPs)

uses leftover hits from STD and relaxes the selection criteria

Large-radius tracking in a nutshell

Standard Tracking (STD) optimised to reconstruct prompt tracks in the ID

Large-Radius Tracking (LRT) developed to capture the discarded interesting physics (e.g. LLPs)

uses leftover hits from STD and relaxes the selection criteria

G. Gustavino

LRT ran only on dedicated data streams ~O(10%) data

- * too expensive both in terms of CPU and disk space
 - optimised for high efficiencies
 - dominated by fake tracks

combinations of un-related clusters reconstructed as a track

secondary tracks

(e.g. material interactions)

LIMITING FACTOR FOR MANY ANALYSES

LRT overhaul

- narrower phase space (e.g. z₀)
- more stringent requirements (e.g. track quality)
- algorithm logic changes (e.g. strip-only seeds)

LRT performance: arXiv:2304.1286

The development of the LRT algorithm focused on reducing the fake rates at the earliest step possible

*** x20** fake rate reduction \checkmark w/ high ε for LLP signatures

 $\Delta s/\sqrt{b} > 400\%$

LRT overhaul

- narrower phase space (e.g. z₀)
- more stringent requirements (e.g. track quality)
- algorithm logic changes (e.g. strip-only seeds)

G. Gustavino

LRT performance: arXiv:2304.12867

The development of the LRT algorithm focused on reducing the fake rates at the earliest step possible

*** x20** fake rate reduction \checkmark w/ high ε for LLP signatures

 $\Delta s/\sqrt{b} > 400\%$

LRT overhaul

G. Gustavino

- narrower phase space (e.g. z_0)
- more stringent requirements (e.g. track quality)
- algorithm logic changes (e.g. strip-only seeds)

new physics objects (muonLRT, electronLRT, tauLRT)....and new triggers!

LRT performance: arXiv:2304.12867

The development of the LRT algorithm focused on reducing the fake rates at the earliest step possible

*** x20** fake rate reduction \checkmark w/ high ε for LLP signatures **x10** algorithm speed up

x50 less disk consumption

LRT integrated into the ATLAS reconstruction chain allows to exploit the FULL dataset

GAME changer for LLP searches

33

New LLP triggers @ Run-3

The improvements in terms of CPU execution time of both STD & LRT allowed the integration at trigger level

displaced vertex in ID

looking for large number of hits on outer layer compared to inner layer MET or Jet-seeded

ISR+displaced jet(s)

p_T > 180 GeV

single displaced jet w/ $p_T > 140$ GeV di-displaced jet w/ $p_T > 55 \text{ GeV}$

New LLP triggers @ Run-3

Displaced electrons and muons

Allows to extend reaches of searches based on photon and μ MS-only triggers

QCD-like dark sector producing dark showers

- O Dark hadrons can decay in a QCD-like fashion
- O Dark pions can have a non-null lifetime

high multiplicity of DVs and

selecting jets with small prompt track fraction

G. Gustavino

Tracking Trigger Public plots

Emerging jets

- displaced tracks

Rich search LLP program in ATLAS

Interplay between

- dedicated analyses
- reinterpretations

allows to extensively probe different lifetime regimes

LLP searches are often statistically limited! ▶ Background-zero searches sensitivity $\propto \mathcal{L}$

NEW IDEAS to probe such an '*anomalous*' signatures:

new algorithms (e.g. LRT)

Run-2/3 ID

 \bigcirc deep learning \leftrightarrow model-independence

new detectors technologies @ Run-4

G. Gustavino

BACKUP

Large-radius tracking

Changes in Run-3 LRT highlights

The earlier the cuts can be applied, the less CPU time is wasted processing fake tracks in later steps CPU dominated by *track finding* and *ambiguity resolution* steps

G. Gustavino

Tightening of cuts which are applied at several stages of track reconstruction (d0, z0 etc. to reduce lookelsewhere range to search)

STD vs LRT

Selection criteria	Primary	LRT		
max. $ d_0 $ [mm]	5	300		
max. $ z_0 $ [mm]	200	500		
min. $p_{\rm T}$ [GeV]	0.5	1		
max. $ \eta $	2.7	3.0		
max. silicon holes	2	1		
max. double holes	1	0		
max. holes gap	2	1		
road width [mm]	12	5		
seeding	Pixels and SCT	SCT only		
max. seeds per middle Pixel SP	1	_		
max. seeds per middle SCT SP	5	1		
Common selection criteria				
min. silicon hits	8			
min. unshared silicon hits	6			
max. track $\chi^2/n_{\rm DoF}$	9			
keep all confirmed seeds	true			

SUSY LLP summary plots

CalRatio NN

Higgs to invisible

In SM invisible Higgs decay has $BR(H \rightarrow ZZ^* \rightarrow 4v) \sim 0.1\%$ a deviation can be sensitive to BSM contribution *

Analysis combination of searches for $H \rightarrow inv$

exploiting **ALL** the Higgs production processes □ VBF+MET is the leading channel

$B(H \rightarrow inv) < 10.7 (7.7) \% @ 95\% CL obs (exp)$

most stringent limits on the $B(H \rightarrow inv)$ to date! *

- main limitations of VBF+MET:
 - data stats, V+jets modelling, lepton systs

HNL LFC & LFN

$$|U_{\mu}|^2 \neq 0$$
 $|U_e|^2 = 0$

G. Gustavino

44

Neutrino Portal

Heavy right-handed neutrino mixes with SM neutrino * long lifetime due to **off-shell decay**

HNL: Run-2 analysis

Prompt lepton + 2 OS displaced leptons

secondary vertex

6 different channels

sensitive to different coupling scenarios

irreducible BKG from random track-crossing

estimated from CR

shuffling prompt SS DV and OS DV regions

