

Status of MSD subsystem

L. Servoli, M. Barbanera, B. Di Ruzza, L. Salvi, G. Silvestre

- \rightarrow 3 x-y planes were placed after the second magnet.
- \rightarrow installation procedure was smooth.
- \rightarrow we had to replace one ADC board the first period out of the beam time (1 h time needed).
- \rightarrow no other hardware problems to report.

L. Servoli

 \rightarrow dismounting and radioprotection checks with no problem.

TO FOOT GNAM SERTING

 \rightarrow MSD working correctly all the time.

L. Servoli

 \rightarrow We had an apparent problem spotted by Online Monitoring plots for sensor n. 3 (y sensor of second station) for runs:

→ no problem in cluster occupancy (SHOE reconstruction) between the x and y sensors of the second station (Run 6243)

MSD - strip map for sensor 3

MSD - strip map for sensor 4

Most probable explanation could be bad tuning of the Online Monitoring for these plots.L. ServoliFOOT Collaboration Meeting - 11/13 december 2023 - Trento4

-> Pedestal and noise (aka strip calibration)

We had 32 calibration runs during the two data taking periods. Goal was an updated calibration for each data taking period, one-two hours $\frac{3}{2}$ $\frac{18}{16}$ $\frac{18}{16}$

-> Preliminary study of calibration stability

Sensor 1, Strip [3,21]: pedestal distribution over all calibration runs:

FOOT Collaboration Meeting - 11/13 december 2023 - Trento

L. Servoli

\rightarrow Pedestal and noise (aka strip calibration)

L. Servoli

Are they true pedestal fluctuations? Or should we use other sets? Work in progress

\rightarrow Pedestal and noise (aka strip calibration)

Sensor #	1	2	3	4	5	6
# bad strips	5	2	5	2	3	1

All bad/suspicious strips that change abruptly the pedestal are typically the first of a chip (not always). Work in progress to understand better this part and the effect (if any) on signal reconstruction.

\rightarrow Pedestal and noise (aka strip calibration)

Single strip noise distribution for strip [3,21] over all calibration runs.

L. Servoli

\rightarrow Pedestal and noise (aka strip calibration)

Single strip noise distribution for sensor 1, all strips, all calibration runs.

 \rightarrow only 14 strips with noise > 3 ADC

L. Servoli

\rightarrow Pedestal and noise (aka strip calibration)

Sensor 3, strip [0,12]: Strip noise for all calibration runs.

Most probable noise around 5 ADC. Some spikes.

Under investigation to understand instabilities.

L. Servoli

-> Pedestal and noise (aka strip calibration)

Strips with possible problems/bad: strip noise > 4.0 ADC

Sensor #	1 (1x)	2 (1y)	3 (2x)	4 (2y)	5 (3x)	6 (3y)
Average single strips noise	2.6	2.2	2.1	2.2	2.1	2.6
# bad strips	0	2	1	6	3	1

MSD: future data taking

- → define a mechanical setup system like the IT.
 We have found a mechanical engineer support in Perugia for this work (Cristiano Turrioni, CMS).
 Start beginning of next year. (C. Turrioni, G. Silvestre)
- \rightarrow help to understand MSD Online Monitoring plots
- → define a set of specific MSD tools to investigate quickly abnormal behaviour during data taking.

MSD: next analisys steps

→ eta function correction implementation. Gianluigi defined the corrections to be implemented that were implemented by Riccardo Zini (BO master thesis) on a separate branch. Should be merged in the main branch.
 Start beginning of next year (SHOE expert).

MSD: next analisys steps

- → proton detection efficiency (B. Di Ruzza, L. Servoli) In progress.
 - Data from 2021 MSD dedicated data taking at Trento proton accelerator. (228, 157, 70 MeV)
 - \rightarrow three x-y planes.
 - → autoalignment of the x and y sensors (SHOE clusters).
 → use of SHOE gold clusters coordinates (separate x and y view) for planes 1 and 3 to draw a track and then look at possible clusters in 2nd plane (from raw data)

MSD: next analisys steps

 → noisy strip study and tagging (L. Salvi, G. Silvestre) In progress.
 Data from 2021 GSI ¹⁶O data taking.
 Study a better algorhitm to identify problematic strips, tag them and study the effect of their removal on cluster reconstruction on several data taking campaign.