

Istituto Nazionale di Fisica Nucleare

Analysis of nuclear clustering at intermediate energies with the FOOT experiment

FOOT Collaboration Meeting December2023

Author: Alice Caglioni

Introduction to nuclear clustering

Fig. 1: Typical cluster structures known in the stable nuclei.

Fig. 2: (Left) Binding energy per nucleon of light nuclear systems up to A = 28. (Right) Excitation energy of first excited states plotted versus binding energy per nucleon for nuclei up to A = 20.

[M. Freer. *Reports on Progress in Physics*, 70(12):2149, (nov 2007)]

Introduction to nuclear clustering

[K. Ikeda, et al. *Progress of Theoretical Physics Supplement*, E68:464–475, 07 (1968)]

Fig. 3: The so-called 'Ikeda' diagram showing how above particle-breakup thresholds, the structure of light α -conjugate nuclei can be thought of as comprised of α clusters.

Techniques for the study of clusters in nuclei

Experimentally Observed Clusters in α-Particle Nuclei at low energies in literature

function of total kinetic energy. The inset corresponds to zooms on the 8Beg.s. peak.

[Ad.R. Raduta, et al. Physics Letters B, 705(1):65-70, (2011)].

Experimentally Observed Clusters in α-Particle Nuclei at low energies in literature

Experimentally Observed Clusters in α-Particle Nuclei at intermediate energies

Performed analyses

Aim: exploring the possibility to analyze α clustering phenomenology through the FOOT experiment by quantifying α correlation arising from the 2 decay channels of ¹²C.

9 Alice Caglioni

α particles selection

MC Truth

• Particle generated from a primary;

- Particle forward directed (initial momentum>0);
- Production region: TGT;
- Detection region: TW;
- Angular acceptance: 10°;
- Initial Kinetic energy > 50 [MeV/u];
- Charge = 2;
- Baryonic number = 4;

Reconstruction

- Detection region: TW;
- Reconstruction charge from TW = 2;
- Reconstructed mass in range 3.2 ÷ 4.3 GeV/c²;

Fig. 7: Reconstructed mass distribution of reconstructed particles with the reconstructed charge $Z_{rec} = 2$ generated on target that arrive on TW.

α particles selection

Mixing Matrix

Fig. 9: Opening angle between pairs of MC simulated α particles out of **target** from events producing two and three α particles together

MC Truth

Angular Separation Analysis

Reconstruction

Reconstruction efficiency:

$$Eff = \frac{Number \ of \ reconstructed \ \alpha \ particles}{Number \ of \ MC \ \alpha \ particles} = 67.2\%$$

Fig. 10: Opening angle between pairs of reconstructed α particles at TW from events producing two and three α particles together.

Fig. 11: Opening angle between pairs of MC α particles at TW impacting on the same TW bar from events producing two and three α particles together.

Angular Separation Analysis

Reconstruction

Fig. 12: Opening angle on TW between reconstructed α and particles other than ⁴He.

Excitation energy Analysis: ⁸Be \rightarrow ¹²C(α , ⁸Be)

Fig. 13: Excitation energy spectrum for the breakup of 8Be intermediate stage of 12 C into two α particles from MC α particles analysis.

Excitation energy Analysis: ⁸Be \rightarrow ¹²C(α , ⁸Be)

Fig. 14: Excitation energy spectrum of the breakup of 8Be intermediate stage of 12 C into 2 α particles VS the opening angular distribution between α particles in the MC Truth analysis.

Excitation energy Analysis: ⁸Be \rightarrow ¹²C(α , ⁸Be)

Reconstruction

Fig. 15: Excitation energy spectrum for the breakup of ⁸Be intermediate stage of ¹²C into 2 α particles from reconstructed α particles analysis.

Fig. 16: Difference between the modulus of reconstructed and MC momenta. In red is reported the Gaussian distribution.

Excitation energy Analysis: ¹²C \longrightarrow ¹²C(α , 2 α)

 ${}^{^{12}\text{C}}E_{ex} = \sqrt{(E_{kin_i} + E_{kin_j} + E_{kin_k} + 3m_\alpha)^2} - (p_i + p_j + p_k)^2 - 3m_\alpha$

Fig. 17: Excitation energy spectrum for the breakup of ${}^{12}C$ into 3 α particles from MC Truth α particles analysis.

Fig. 18: Excitation energy spectrum for the breakup of ${}^{12}C$ into 3 α particles from Reconstruction α particles analysis.

Conclusions

- With reconstructed data, it can still observe the expected angular correlations between α particles. A minimum statistics of ~5 10⁶ events have to be collected
 - Possibility to investigate excitation levels
 from α particles detection in reconstructed
 events

Future Developments

- Future nucleus to be studied: ¹⁶O
- Future experimental setup to be used: EEC

Study of sequential decay.

Reconstruction energy calibration

Backup Reconstruction efficiency

$$Eff_1 = \frac{No. \ of \ reconstructed \ \alpha \ from \ MC \ charge \ selection}{No. \ of \ MC \ \alpha \ particles} = 84.7\%$$

$$Eff_2 = \frac{No. \ of \ reconstructed \ \alpha \ from \ reco \ charge \ selection}{No. \ of \ MC \ \alpha \ particles} = 67.2\%$$

 $Eff_3 = \frac{No. \ of \ reconstructed \ \alpha \ from \ reco \ charge \ selection \ (No \ MC \ info)}{No. \ of \ MC \ \alpha \ particles} = 74.2\%$

Backup Angular Separation Analysis

Opening angle between pairs of MC simulated α particles at target from events producing **2** (left) and **3** (right) α particles.

Backup Angular Separation Analysis

