

GSI2021 Analysis Updates

Giacomo Ubaldi

XV FOOT Collaboration Meeting

Trento

GSI 2021 Analysis

- Data-taking at GSI (Darmstadt, Germany) in 2021
- 16O 400 MeV/u on 5 mm C target
- Partial setup: no magnet, only one module of calorimeter

- VT, MSD, TW considered
- Analysis based on Global tracking
- MC considerations

In the analysis, I am considering the following levels:

all TAMCParticles

- primary beams
- primary fragments generated in the TG
- which cross the end of TW

(all the particle inside the geometrical acceptance of the setup without secondary fragmentation beneath the detectors)

In the analysis, I am considering the following levels:

all TAMCParticles

- primary beams
- primary fragments generated in the TG
- which cross the end of TW

(all the particle inside the geometrical acceptance of the setup without secondary fragmentation beneath the detectors) N_RECO

All reconstructed tracks by GENFIT + cuts

In the analysis, I am considering the following levels:

To compute angular differential cross section:

$$rac{d\sigma}{d heta}(Z, heta) = rac{Y(Z, heta)}{N_{beam} \; N_{target} \; \Omega_{ heta} \; \epsilon(Z, heta)}$$

where:

Global Tracking strategy

N_RECO

Tracks generated using a

Kalman Filter-based algorithm (GENFIT).

- Use info from trackers (VT, MSD) and TW via clusters
 - at least 7 clusters required
 - Start from VT tracklets
 - Good vertex point required
 - BM-VT match required
 - only 1 track in BM required
- Projection and extrapolation to further detector
- Z obtained from TW
 - TW point required
- Fit of the track candidate

thanks to Roberto Z.

Global Tracking strategy

N_RECO

Tracks generated using a

Kalman Filter-based algorithm (GENFIT).

- Use info from trackers (VT, MSD) and TW via clusters
 - at least 7 clusters required
 - Start from VT tracklets
 - Good vertex point required
 - BM-VT match required
 - only 1 track in BM required
- Projection and extrapolation to further detector
- Z obtained from TW
 - TW point required
- Fit of the track candidate

thanks to Roberto Z.

Tracks are not too optimized in order to be refined in analysis. Then, the first attempt was a tuning:

N_RECO +

QUALITY CUT

- χ² / ndof < 2
- worst residual < 0.01 cm

see Yun et al. talk 04/10/23

Quality cut – cross section

 I will start my considerations showing the plot of Beryllium (Z=4) differential cross section (all the other plots will be reported at the end of the presentation)

- Cross sections computed using the formula: $\frac{d\sigma}{d\theta}(Z,\theta) = \frac{Y(Z,\theta)}{N_{beam} N_{target} \Omega_{\theta} \epsilon(Z,\theta)}$
- Systematical impact studied with the reco ratio:

$$reco~sys = rac{\sigma_{reco} - \sigma_{MC}}{\sigma_{MC}}$$

Quality cut – cross section

• I will start my considerations showing the plot of **Beryllium (Z=4) differential cross section** (all the other plots will be reported at the end of the presentation)

- Cross sections computed using the formula: $\frac{d\sigma}{d\theta}(Z,\theta) = \frac{Y(Z,\theta)}{N_{beam} N_{target} \Omega_{\theta} \epsilon(Z,\theta)}$
 - Systematical impact studied with the **reco ratio**:

$$reco~sys = rac{\sigma_{reco} - \sigma_{MC}}{\sigma_{MC}}$$

- There is a systematical overestimation of the cross section values
- Worst reconstruction at lower angle
 - → out of target fragmentation

N Chi2AllReco migMatrix Z

OUALITY CUT

Let's consider the CMM, where:

- **Z**_{reco} is the charge reconstructed by the TW for every track
- Z_{true} is the MC charge of the most frequent particle in the track

Let's consider the CMM, where:

- Z_{reco} is the charge reconstructed by the TW for every track
- Z_{true} is the MC charge of the most frequent particle in the track

Let's consider Z_{true} = 8 :

• If the beam has a fragmentation out of the target:

 Z_{true} remains 8 because the most frequent particle in the track Z_{reco} would be the one of the fragment crossing the TW

 \rightarrow this explains the Z_{true} = 8 row

Let's consider the CMM, where:

- Z_{reco} is the charge reconstructed by the TW for every track
- Z_{true} is the MC charge of the most frequent particle in the track

Let's consider $Z_{true} = 8$:

• If the beam has a fragmentation out of the target:

 Z_{true} remains 8 because the most frequent particle in the track Z_{reco} would be the one of the fragment crossing the TW

 \rightarrow this explains the Z_{true} = 8 row

According to how global tracking works, out of target fragmentation follows this pattern:

- Since there was only a track in the vertex, the global tracking will reconstruct 1 track at most
- using the closer TW point

According to how global tracking works, out of target fragmentation follows this pattern:

Let's consider the MM, where:

- **Z**_{reco} is the charge reconstructed by the TW for every track
- Z_{true} is the MC charge of the most frequent particle in the track

Let's consider $Z_{true} = 8$:

- If the beam has a fragmentation out of the target:
 - Z_{true} remains 8 because the most frequent particle in the track Z_{reco} would be the one of the fragment crossing the TW
 - \rightarrow this explains the Z_{true} = 8 row

- Since there was only a track in the vertex, the global tracking will reconstruct 1 track at most
- using the closer TW point

According to how global tracking works, out of target fragmentation follows this pattern:

Z=8

Let's consider the MM, where:

- Z_{reco} is the charge reconstructed by the TW for every track
- Z_{true} is the MC charge of the most frequent particle in the track

Let's consider $Z_{true} = 8$:

- If the beam has a fragmentation out of the target:
 - Z_{true} remains 8 because the most frequent particle in the track Z_{reco} would be the one of the fragment crossing the TW
 - \rightarrow this explains the Z_{true} = 8 row

- Since there was only a track in the vertex, the global tracking will reconstruct 1 track at most
- using the closer TW point

Origin of the fragment crossing the TW for a specific track signed with Z_{true}

 As said, the highest amount of fragmentation is given by the primary, before and after TG

Reco tracks + Chi2 cuts

Origin of the fragment crossing the TW for a specific track signed with Z_{true}

• As said, the highest amount of fragmentation is given by the primary, before and after TG

Origin of the fragment crossing the TW for a specific track signed with Z_{true}

- As said, the highest amount of fragmentation is given by the primary, before and after TG
- Applying the cut, the $Z_{true} = 8$ row has been removed from CMM (and not only)

Multitrack cut – cross section

• Let's see the plot of Boron (Z=4) differential cross section with the new cuts

- Tempting improvement in particular at low angle (for all the elements)
- With the new cuts the cross section is systematically closed to reference one but still higher than ~ 5%

Multitrack cut – cross section

• Let's see the plot of Boron (Z=4) differential cross section with the new cuts

- Tempting improvement in particular at low angle (for all the elements)
- With the new cuts the cross section is systematically closed to reference one but still higher than ~ 5%

• Let's see the plot of Lithium (Z=3) differential cross section with the new cuts

 Despite the improvement applying the last cut, there is a systematic contribution ~ 15% which is higher than for the other plots

• Let's see the plot of Lithium (Z=3) differential cross section with the new cuts

Giacomo Ubaldi

8 Z_{reco}

441

 10^{4}

108

 10^{2}

10

• Let's see the plot of Lithium (Z=3) differential cross section with the new cuts

→ due to TW reconstruction?

https://agenda.infn.it/event/35352/contributions/201148/

• From Marco T.'s talk at GM of Bergamo:

Events surviving the TW Z match

(Reminder: H and He are produced with large beta distributions)

- It is possible that more than one fragment pass through the same TW cross, misreconstructing the charge.
 - \rightarrow High impact for misreconstructed Z_{true} = 2 charges into Z_{reco} = 3.

• From Marco T.'s talk at GM of Bergamo:

https://agenda.infn.it/event/35352/contributions/201148/

CMM matrix: GSI2021_MC(160_C_400_1)

Concluding:

- The CMM as built here is showing the intrinsic limit of TW in identifying standalone the Z
- The result depend on TW granularity and the physics we're studying (fragmentation models in FLUKA)
- Help can come from:
 - > 1) ZID from other detectors (MSD, VTX?)
 - > 2) global tracking in disentangle close tracks
- Unfolding of the Z from the CMM cannot be done: the purity correction have to be used, but there is stll a dependence on the FLUKA MC models
- Correlation of the multiplicity of tracks in the same bar with the production angle of the fragments?

Purity = N(Zrec=Ztrue) / N (Zrec)

CMM_crossing_inTG

Marco Toppi

• From Marco T.'s talk at GM of Bergamo:

https://agenda.infn.it/event/35352/contributions/201148/

CMM matrix: GSI2021_MC(160

Concluding:

- The CMM as built here is showing the intrinsic limit of TW in identifying standalone the Z
- The result depend on TW granularity and the physics we're studying (fragmentation models in FLUKA)
- Help can come from:
 - > 1) ZID from other detectors (MSD, VTX?)
 - > 2) global tracking in disentangle close tracks
- Unfolding of the Z from the CMM cannot be done: the purity correction have to be used, but there is stll a dependence on the FLUKA MC models
- Correlation of the multiplicity of tracks in the same bar with the production angle of the fragments?

 An event like this can be reconstructed as two tracks with the same TWPoint by Global Tracking

Marco Topp

https://agenda.infn.it/event/35352/contributions/201148/

• From Marco T.'s talk at GM of Bergamo:

CMM matrix: GSI2021_MC(160_

Concluding:

- The CMM as built here is showing the intrinsic limit of TW in identifying standalone the Z
- The result depend on TW granularity and the physics we're studying (fragmentation models in FLUKA)
- Help can come from:
 - > 1) ZID from other detectors (MSD, VTX?)
 - > 2) global tracking in disentangle close tracks
- Unfolding of the Z from the CMM cannot be done: the purity correction have to be used, but there is stll a dependence on the FLUKA MC models
- Correlation of the multiplicity of tracks in the same bar with the production angle of the fragments?

sameTWPOINT CUT

- An event like this can be reconstructed as two tracks with the same TWPoint by Global Tracking
- Let's apply a cut in which all these reco tracks
 are omitted:

Marco Toppi

same TW point cut – cross section

- the reconstructed events out of diagonal for Z=2 and Z=3 are considerably reduces (and not only)
- Improvement of diagonalization of MM
- limited loss of statistics

• Let's see the plot of Lithium (Z=3) differential cross section with the new cuts

• The systematics decrease up to 5%

efficiency comparison - Z = 1

efficiency comparison - Z = 2

efficiency comparison - Z = 3

efficiency comparison - Z = 4

efficiency comparison - Z = 5

efficiency comparison - Z = 6

efficiency comparison - Z = 7

Results – Integral Elemental Cross Sections

Elemental efficiency comparison

Results – Integral Elemental Cross Sections

Elemental efficiency comparison

- Applying Quality Cut, Multitrack Cut and same TWpoint Cut a discrepancy of ~ 5 % is achieved in a MC closure test for angular differential cross section and elemental cross section reconstruction vs the true cross section.
- Such discrepancy can be accounted as a systematic error in our reconstructed cross section.

- Applying Quality Cut, Multitrack Cut and same TWpoint Cut a discrepancy of ~ 5 % is achieved in a MC closure test for angular differential cross section and elemental cross section reconstruction vs the true cross section.
- Such discrepancy can be accounted as a **systematic error** in our reconstructed cross section.
- the **background** (out of target, combinatorial and cross feed) is almost t**otally rejected** with the found selection criteria
- the purity of the selected track strongly increased
 - → no need of background subtraction technique?

How to further improve our reconstructed XS and reduce systematics?

- Main criticalities to be faced for cross section measurements using Global Tracking:
 - Fragmentation out of target
 - TW instrinsic limits

- \rightarrow investigate more feature of secondary fragments tracks
- → **MSD charge reconstruction** could be of help (to be checked with MC truth before implementing reconstruction)
- → E_{kinetic} measured by **calorimeter** should be very different for fragments in the same TW cross!
- check how using the Z information from other detector (VTX and MSD) improve track quality and so background rejection
- Check if angular unfolding is needed

How to further improve our reconstructed XS and reduce systematics?

- Main criticalities to be faced for cross section measurements using Global Tracking:
 - Fragmentation out of target
 - TW instrinsic limits

- \rightarrow investigate more feature of secondary fragments tracks
- → **MSD charge reconstruction** could be of help (to be checked with MC truth before implementing reconstruction)
- → E_{kinetic} measured by **calorimeter** should be very different for fragments in the same TW cross!

- check how using the Z information from other detector (VTX and MSD) improve track quality and so background rejection
- Check if **angular unfolding** is needed

What's next?

- Let's move to real data of GSI2021 campaign
- study thresholds and detector efficiencies in data for MSD and VTX and tune MC accordingly
- studying the MC reconstructed cross section as a function of beta bins
- Let's move to MC dataset with **full setup** (in preparation for CNAO2023...)

Thanks for the attention!

Back-up slides

Yield distributions events 10⁷ N Reference (MC) **OUALITY CUT** 10⁶ MULTITRACK CUT 10⁵ 10⁴ 10³ 0.01% 75% 95% 90% 10² 92% 90% 86% 24% 3 2 7 8 Zreco

Bias on good event which is cut:

As expected:

- the Z_{true} = 8 row has been removed
- the highest amount of cut yields are from Z=8 and bad Z_{reco}
- N.B.: this cut introduces a bias in events where there is
- fragmentation in target but only one fragment is revealed.

However, it is still taken into account when computing the efficiency, since:

Reco tracks + Chi2 cuts

Reco tracks + Chi2 cuts + n>1

N 10 2853 3801 12 1089 10² 416 542 10 2384 291 14 9 3 -1078 8 Z_{reco} 2 3 4 5 6 7 1

migMatrix_Z with theta < 0.600000

Reco tracks + Chi2 cuts

Reco tracks + Chi2 cuts + n>1

Reco tracks + Chi2 cuts + n>1 + tw cuts

Reco tracks + Chi2 cuts + n>1 + tw cuts

Giacomo Ubaldi

migMatrix_Z with theta < 1.200000

Reco tracks + Chi2 cuts + n>1

Reco tracks + Chi2 cuts + n>1 + tw cuts

migMatrix_Z with theta < 1.800000

 3
 1
 1
 10'

 7
 1
 733
 4
 10'

 6
 1
 3
 800
 1
 1
 10'

 4
 1
 2
 1110
 1
 1
 10'

 3
 a
 6
 1967
 a
 1
 1
 1
 1
 10'

 2
 40
 13414
 416
 15
 1
 3
 2
 5
 1
 10'

 1
 2
 3
 4
 5
 6
 7
 8
 1
 10'
 1
 10'
 10'
 10'
 10'
 10'
 10'
 10'
 10'
 10'
 10'
 10'
 10'
 10'
 10'
 10'
 10'
 1

Reco tracks + Chi2 cuts + n>1

Reco tracks + Chi2 cuts + n>1 + tw cuts

migMatrix_Z with theta < 2.400000

Reco tracks + Chi2 cuts + n>1

Reco tracks + Chi2 cuts + n>1 + tw cuts

migMatrix_Z with theta < 3.000000

Reco tracks + Chi2 cuts + n>1

Reco tracks + Chi2 cuts + n>1 + tw cuts

migMatrix_Z with theta < 3.600000

Z^{Irue} = 10⁴ 10² 2 3 2 Z_{reco}

Reco tracks + Chi2 cuts + n>1

10²

Z_{reco}

Reco tracks + Chi2 cuts + n>1 + tw cuts

Reco tracks + Chi2 cuts + n>1

Reco tracks + Chi2 cuts + n>1 + tw cuts

migMatrix Z with theta < 4.800000

migMatrix_Z with theta < 5.400000

8 Zee

1

2 3 4

5 6 7

migMatrix_Z with theta < 6.000000

Angular MM

migMatrix_theta_Z=5

