

# GSI2021 analysis without tracking

## Riccardo Ridolfi

12 December 2023 - XV FOOT Collaboration Meeting



# **Cross section measurement**

With available data total integrated and angle differential cross section are achievable (no kinetic energy)

$$\Delta \sigma(Z) = \int_{\beta_{\min}}^{\beta_{\max}} \int_{0}^{\theta_{\max}} \left( \frac{\partial^2 \sigma}{\partial \theta \partial \beta} \right) \mathrm{d}\theta \mathrm{d}\beta = \frac{1}{N_{\mathrm{pri}}}$$

Align FOOT detectors and estimate angular acceptance

Extract fragment yields from TW

Calculate MC efficiencies for fragments

Evaluate the beta range from data and put in MC for efficiency calculations

 $\mathbf{m} \cdot N_{\mathrm{TG}} \cdot \varepsilon(Z)$ 

## **Cross section measurement**

With available data total integrated and **angle differential** cross section are achievable (no kinetic energy)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\theta}(Z) = \frac{Y(Z,\theta)}{N_{\mathrm{prim}} \cdot N_{\mathrm{TG}} \cdot \Delta\theta \cdot \varepsilon(\boldsymbol{Q})}$$

Align FOOT detectors and estimate **angular acceptance** 

Extract fragment yields from TW

Calculate MC efficiencies for fragments



## Angle measurement







# Why background subtraction?







### **MC reco**

### **no MC information**

reconstructed angle using BM and TW point position

signal - background with normalized yields wrt number of primaries

## What's new?

New MC simulation without target to ease the process

Some changes triggered by recent discussions and observations, in particular: -impact of multiple fragments in the same TW crossing -> purity -impact of statistics in background subtraction

# Purity

## How to manage? (to study CMM, purity and efficiencies)



Marco's talk

XIV GM

- the TW points
- impinging tracks
- If this is the case assign:
  - Good match if Zrec==Zmc
  - Wrong match if Zrec!=Zmc

Needed the matching of the trkld for each track crossing the TW and the one related to

In the case of more tracks hitting the same bar check if the vector of trklds associated to the TWpoints contains at least trkld of the





(Reminder: H and He are produced with large beta distributions)



$$\cdot (S(Z) - B(Z))$$

$$2 \cdot \left[ \left( \frac{\Delta Y_B}{Y_B} \right)^2 + \left( \frac{\Delta N_B}{N_B} \right)^2 \right]$$

### **Available Statistics**

 Y<sub>S</sub> fragments yields in TG runs (S->S+B) • N<sub>S</sub> primaries in TG runs (S->S+B) • Y<sub>B</sub> fragments yields in NO TG runs • N<sub>B</sub> primaries in NO TG runs

## 400 MeV/u <sup>16</sup>0 beam on 5mm Carbon target

| $\operatorname{Run}$ | Trigger type | Target       | Events  |
|----------------------|--------------|--------------|---------|
| 4305                 | MB           | $\mathbf{C}$ | 162102  |
| 4306                 | MB           | $\mathbf{C}$ | 577096  |
| 4307                 | MB           | $\mathbf{C}$ | 513370  |
| 4308                 | Frag + MB    | $\mathbf{C}$ | 510169  |
| 4309                 | Frag + MB    | $\mathbf{C}$ | 531812  |
| 4310                 | Frag + MB    | $\mathbf{C}$ | 1012099 |
| 4313                 | MB           | no           | 57133   |







N primaries in MC ~~ 993k

• Y<sub>s</sub> fragments yields in TG runs (S->S+B) N<sub>s</sub> primaries in TG runs (S->S+B) ~ 1.1M • Y<sub>B</sub> fragments yields in NO TG runs N<sub>B</sub> primaries in NO TG runs ~ 52k



**Relative uncertainties in XS (only stat)** Marco's talk 21 June AM



N<sub>B</sub> primaries in NO TG runs ~ 52k



**Relative uncertainties in XS (only stat)** Marco's talk 21 June AM



# New analysis flow

Evaluate efficiencies and purities

Repeat for with and w/o target samples

Normalize yields and subtract background

Apply efficiency for fragmentation in target

Calculate angular cross sections

Compare with MC















Purity correction goes always in the "right" direction



Purity correction goes always in the "right" direction

Huge contribution in Li (and Be) cross section as expected



Purity correction goes always in the "right" direction

Huge contribution in Li (and Be) cross section as expected

Difference in C and N to be understood



Purity correction goes always in the "right" direction

Huge contribution in Li (and Be) cross section as expected

Difference in C and N to be understood

Angle unfolding procedure will have an impact

# Conclusions

Background subtraction strategy seems to work also for angle differential cross sections

**Purity correction implemented(very important for Li and Be)** 

Good agreement in MC closure test except for first bin of C and N

Angle unfolding machinery ready to be performed

Very few statistics for background reduces final number of bins

Comparison with "with tracking analysis" ongoing (and promising!) (Giacomo's talk)

# Thanks for listening!





DESY 12-129 September 2012

ISSN 0418-9833

### TUnfold, an algorithm for correcting migration effects in high energy physics

### Stefan Schmitt, DESY, Notkestraße 85, 22607 Hamburg email: sschmitt@mail.desy.de

### Abstract

TUnfold is a tool for correcting migration and background effects in high energy physics for multi-dimensional distributions. It is based on a least square fit with Tikhonov regularisation and an optional area constraint. For determining the strength of the regularisation parameter, the Lcurve method and scans of global correlation coefficients are implemented. The algorithm supports background subtraction and the propagation of statistical and systematic uncertainties, in particular those originating from limited knowledge of the response matrix. The program is interfaced to the ROOT analysis framework.

### 21

# CMM matrix: GSI2021\_MC(160\_C\_400\_1)



CMM\_crossing

Marco Toppi



### Let's look at the data (preliminary)! Section Z3 Angular cross section Z4



### Let's look at the data (preliminary)!

Angular cross section Z6



15

## Very few background sample for 400 MeV/u Oxygen...

| 11 | Carbon target   | MargaritaMajorit | 400 | Carbon 5 mm | 1,252,568 | VTX in data |
|----|-----------------|------------------|-----|-------------|-----------|-------------|
| 12 | Carbon target & | Fragmentation    | 400 | Carbon 5 mm | 2,054,080 | VTX in data |
| 20 | Alignment       | MargaritaMajorit | 400 | no target   | 57,133    | VTX in data |

### Angular yields Z5



### Angular yields Z4

16