

Analysis status

FOOT General Meeting - Trento 12/12/2023

Marco Toppi, for the analysis crew

General Meeting – Trento – 12/12/2023

Electronic setup				
Campaign	Beams	Energy [MeV/u]	Targets	Detectors
GSI 2019	Ο	400	С	SC, BM, TW
GSi 2021	Ο	200, 400	C, C ₂ H ₄	SC, BM, VT, MSD, TW
HIT 2022	He	100, 140, 200, 220	С	SC, BM, MSD, TW, CALO
CNAO 2022	С	200	С	SC, BM, VT, MSD, TW, CALO
CNAO 2023	С	200	C, C ₂ H ₄	Full, magnets

Emulsions setup			
Campaign	Beam	Energy [MeV/u]	Targets
GSI 2019	Ο	200, 400	C, C ₂ H ₄
GSI 2020	С	700	C, C ₂ H ₄
CNAO 2023	С	221	C, C ₂ H ₄

CNAO 2017 setup				
Campaign	Beam	Energy [MeV/u]	Targets	Angles
CNAO 2017	С	115,153, 221, 281, 353	C, C ₂ H ₄ , PMMA	32°, 60°, 90°
Marco		General Meeting – Tre	ento – 12/12/2023	Con

We have collected several dataset with different setups: data analysis ongoing / waiting to be analyzed

Electronic setup					
Campaign	Beams	Energy [MeV/u]	Targets	Detectors	Status
GSI 2019	Ο	400	С	SC, BM, TW	\checkmark
GSI 2021	Ο	200, 400	C, C ₂ H ₄	SC, BM, VT, MSD, TW	\checkmark
HIT 2022	He	100, 140, 200, 220	С	SC, BM, MSD, TW, CALO	*
CNAO 2022	С	200	С	SC, BM, VT, MSD, TW, CALO	*
CNAO 2023	С	200	C, C ₂ H ₄	Full, magnets	*

Emulsions setup				
Campaign	Beam	Energy [MeV/u]	Targets	Status
GSI 2019	Ο	200, 400	C, C ₂ H ₄	
GSI 2020	С	700	C, C ₂ H ₄	*
CNAO 2023	С	221	C, C ₂ H ₄	*

CNAO 2017 setup					
Campaign	Beam	Energy [MeV/u]	Targets	Angles	Status
CNAO 2017	С	115,153, 221, 281, 353	C, C ₂ H ₄ , PMMA	32°, 60°, 90°	\checkmark
Marco		Gene	ral Meeting – Trento – 12/12/2	2023	Come fai

We have collected several dataset with different setups: data analysis ongoing / waiting to be analyzed

O + C @ GSI "to be submitted" by 2023, as requested by the FOOT referees + some results of HIT2022

Electronic setup					
Campaign	Beams	Energy [MeV/u]	Targets	Detectors	Status
GSI 2019	Ο	400	С	SC, BM, TW	\checkmark
GSI 2021	Ο	200, 400	C, C ₂ H ₄	SC, BM, VT, MSD, TW	\checkmark
HIT 2022	He	100, 140, 200, 220	С	SC, BM, MSD, TW, CALO	*
CNAO 2022	С	200	С	SC, BM, VT, MSD, TW, CALO	*
CNAO 2023	С	200	C, C ₂ H ₄	Full, magnets	*

Emuls	ions setup				
Car	mpaign	Beam	Energy [MeV/u]	Targets	Status
GS	SI 2019	0	200, 400	C, C ₂ H ₄	\checkmark
GS	SI 2020	С	700	C, C ₂ H ₄	*
CNA	AO 2023	С	221	C, C ₂ H ₄	*

CNAO 2017 setup					
Campaign	Beam	Energy [MeV/u]	Targets	Angles	Status
CNAO 2017	С	115,153, 221, 281, 353	C, C ₂ H ₄ , PMMA	32°, 60°, 90°	\checkmark
Marco		Gene	ral Meeting – Trento – 12/12/	2023	Come fai.

Comparing of our results for same dataset acquired with different setups: not an easy task but it is a good chance to verify the solidity of our analysis: electronic - emulsions: He, Li (?), and total XS – forward emitted

Electronic setup					
Campaign	Beams	Energy [MeV/u]	Targets	Detectors	Status
GSI 2019	Ο	400	С	SC, BM, TW	\checkmark
GSI 2021	Ο	200, 400	C , C ₂ H ₄	SC, BM, VT, MSD, TW	\checkmark
HIT 2022	He	100, 140, 200, 220	С	SC, BM, MSD, TW, CALO	*
CNAO 2022	С	200	С	SC, BM, VT, MSD, TW, CALO	*
CNAO 2023	С	200	C, C ₂ H ₄	Full, magnets	*
Emulsions setup					
Campaign	Beam	Energy [N	leV/u]	Targets	Status
GSI 2019	0	200, 4	00	C, C ₂ H ₄	\checkmark
GSI 2020	С	700		C, C ₂ H ₄	*
CNAO 2023	С	221		C, C ₂ H ₄	*

Campaign	Beams	Energy [MeV/u]	Targets	Detectors	Status
GSI 2019	0	400	С	SC, BM, TW	\checkmark
GSI 2021	Ο	200, 400	C , C ₂ H ₄	SC, BM, VT, MSD, TW	\checkmark
HIT 2022	He	100, 140, 200, 220	С	SC, BM, MSD, TW, CALO	*
CNAO 2022	С	200	С	SC, BM, VT, MSD, TW, CALO	*
CNAO 2023	С	200	C, C ₂ H ₄	Full, magnets	*
Emulsions setup					
Campaign	Beam	Energy [M	eV/u]	Targets	Statu
GSI 2019	0	200, 40	00	C, C ₂ H ₄	\checkmark
GSI 2020	С	700		C, C ₂ H ₄	×
CNAO 2023	С	221		C, C ₂ H ₄	×

CNAO 2017 setup					
Campaign	Beam	Energy [MeV/u]	Targets	Angles	Status
CNAO 2017	С	115,153, 221, 281, 353	C, C ₂ H ₄ , PMMA	32°, 60°, 90°	
Marco		Gene	ral Meeting – Trento – 12/12/	2023	Come fai

Comparing of our results for same dataset acquired with different setups: not an easy task but it is a good chance to verify the solidity of our analysis: electronic - emulsions: He, Li (?), and total XS – forward emitted

Campaign	Beams	Energy [MeV/u]	Targets	Detectors	Statu
GSI 2019	0	400	С	SC, BM, TW	\checkmark
GSI 2021	0	200, 400	C, C ₂ H ₄	SC, BM, VT, MSD, TW	\checkmark
HIT 2022	He	100, 140, 200, 220	С	SC, BM, MSD, TW, CALO	*
CNAO 2022	С	200	С	SC, BM, VT, MSD, TW, CALO	×
CNAO 2023	С	200	C , C ₂ H ₄	Full, magnets	×

Emulsions setup				
Campaign	Beam	Energy [MeV/u]	Targets	Status
GSI 2019	Ο	200, 400	C, C ₂ H ₄	\checkmark
GSI 2020	С	700	C, C ₂ H ₄	*
CNAO 2023	С	221	C, C ₂ H ₄	*

CNAO 2017 setup					
Campaign	Beam	Energy [MeV/u]	Targets	Angles	Status
CNAO 2017	С	115,153, 221, 281, 353	C, C ₂ H ₄ , PMMA	32°, 60°, 90°	\checkmark
					×
Marco		Gene	ral Meeting – Trento – 12/12/	2023	ZAL come fai

Comparing of our results for same dataset acquired with different setups: not an easy task but it is a good chance to verify the solidity of our analysis: CNAO2017 - emulsions: H and He (?) - at large angles

Electronic setup					
Campaign	Beams	Energy [MeV/u]	Targets	Detectors	Status
GSI 2019	Ο	400	С	SC, BM, TW	\checkmark
GSI 2021	Ο	200, 400	C, C ₂ H ₄	SC, BM, VT, MSD, TW	\checkmark
HIT 2022	He	100, 140, 200, 220	С	SC, BM, MSD, TW, CALO	*
CNAO 2022	С	200	С	SC, BM, VT, MSD, TW, CALO	*
CNAO 2023	С	200	C, C ₂ H ₄	Full, magnets	×

Emulsions setup				
Campaign	Beam	Energy [MeV/u]	Targets	Status
GSI 2019	Ο	200, 400	C, C ₂ H ₄	\checkmark
GSI 2020	С	700	C, C ₂ H ₄	*
CNAO 2023	С	221	C, C ₂ H ₄	*

CNAO 2017 setup					
Campaign	Beam	Energy [MeV/u]	Targets	Angles	Status
CNAO 2017	С	115,153, 221, 281, 353	C, C ₂ H ₄ , PMMA	32°, 60°, 90°	\checkmark
					X
Marco		Gene	eral Meeting – Trento – 12/12/	2023	Come fai

Electronic setup					
Campaign	Beams	Energy [MeV/u]	Targets	Detectors	Status
GSI 2019	Ο	400	С	SC, BM, TW	\checkmark
GSI 2021	Ο	200, 400	C, C ₂ H ₄	SC, BM, VT, MSD, TW	\checkmark
HIT 2022	He	100, 140, 200, 220	С	SC, BM, MSD, TW, CALO	*
CNAO 2022	С	200	С	SC, BM, VT, MSD, TW, CALO	*
CNAO 2023	С	200	C, C ₂ H ₄	Full, magnets	*

- shown in the analysis meeting of this year focusing only on the XS analysis
- CNAO 2023 data taking (September-November): we had a total of 19 analysis meetings (regular weekly meetings every Wednesday morning at 9.30, everyone is welcomed to join)
- Updates on Emulsion analysis will be provided by Giuliana and Vincenzo today and tomorrow

I will focus now on the status of the analysis of the electronic setup, sharing some of the idea and the results

This year we had some nice advances thanks to the work of the analysis crew despite the interruption due to

Updates of the CNAO2017 setup analysis will be given soon (in one of the upcoming physics meetings) by Ila

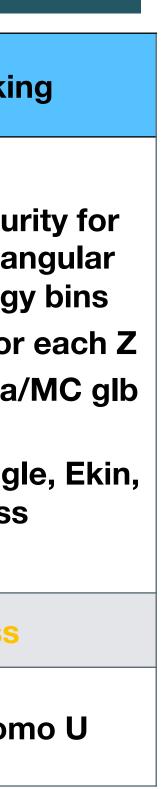
Status of the needed inputs / calibrations of each campaign

Campaign	BM	VTX / IT	MSD	TW (+ SC)	Calo	Alignment	Full MC	DAQ synchronization/cleaning
GSI 2021	\checkmark		Pedestal Eta function	Calibration Eloss/Tof ZID Positions along bar	_			
HIT 2022		-	Pedestal Eta function	Calibration Eloss/Tof ZID Positions along bar	Calibration			
CNAO 2022			Pedestal Eta function	Calibration Eloss/Tof ZID Positions along bar	Calibration	*		
CNAO2023 (12C_200_2023 v2)	\checkmark		Pedestal Eta function	Calibration Eloss/Tof ZID Positions along bar	Calibration		\checkmark	
	Yun	Chris	Benedetto, Gianluigi, Leonello, Lucia	Aafke, Giacomo, Marco, Matteo M, RobZ, Tino	Alessandro, Benedetto, Francesca, Piergiorgio	Yun	Giuseppe, Silvia	Riccardo, Mauro

> Talks from Chris, Alessandro and Benedetto for VTX / IT and CALO about reconstruction / calibration @ CNAO 2023 later > Talks from Giuseppe for the CNAO 2023 MC simulation updates

General Meeting – Trento – 12/12/2023

Performances, MC tuning with data


	BM	VTX / IT	MSD	TW (+SC)	Calo	Global Trackin
Performances data/MC comparison	 Track Efficiency (Data/MC) and Purity Residuals/Pulls Noise Data/MC 	 Clustering, tracking and vertexing Efficiency and Purity for each Z in angukar bins Residual/Pulls for each Z Cluster size for each Z (data/MC) Efficiency wrt sensor position (Data/MC) Dead map, noise Data/MC 	 Efficiency and Purity for cluster and points for each Z Resolution for cluster and point position Cluster size for each Z (data/MC) Noise Data/MC 	 Efficiency and Purity for TW points for each Z Resolution in Eloss, Tof and Position for each Z CMM Eloss, Tof and position along the bar for each Z (data/MC) 	 Efficiency and Purity for clustering for each Z Kinetic energy and position resolution for each Z (data/MC) 	 Efficiency and Pure each Z and A in an and kinetic energy Residual/Pulls for Comparison data/ trk outputs Resolution in angle Momentum, Mass
Status	In progress	In progress	In progress	In progress	In progress	In progress
People	Yun	Chris, Giacomo U	Leonello, Benedetto, Yun	Giacomo, Marco, Roberto	Alessandro, Francesca	Roberto, Giacom

- in a repository
- referee / meeting for funds requests

We should start to collect plots of detector/FOOT performances and data/MC comparison for each campaign

• Useful for having an idea of the status of reconstruction of FOOT and plots ready for conferences / meeting with

What have we learned so far?

From my talk to the last GM:

- sections and verify them with a MC closure test.
- for data will be worse)
- The GSI 2021 analysis is our first testing-bench (see Riccardo and Giacomo Ubaldi talks)
- for improvement) starting from the output provided by the tracking algorithm:
 - the full setup).
 - U's talk)
 - analysis and a "meter" to take decisions for future data taking (for example in terms of statistics)

Marco

First milestone: to have as soon as possible a full reconstruction "under control" able to produce cross

At this moment FOOT doesn't know what is the precision it can reach in measuring MC cross section (and

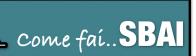
We've managed to reconstruct the MC XS with a good precision with respect to the MC true XS (still room

First complete quantitative check of the tracking algorithm output (check not yet done for magnetic field with

 \succ Nice team effort of many members of the analysis crew for the analysis of the global tracking output to study and identify the needed selection criteria which had allowed a MC closure test at the actual state (see Giacomo

We're starting to understand better our detector / the full reconstruction and its limits. Important tool for all the

General Meeting – Trento – 12/12/2023

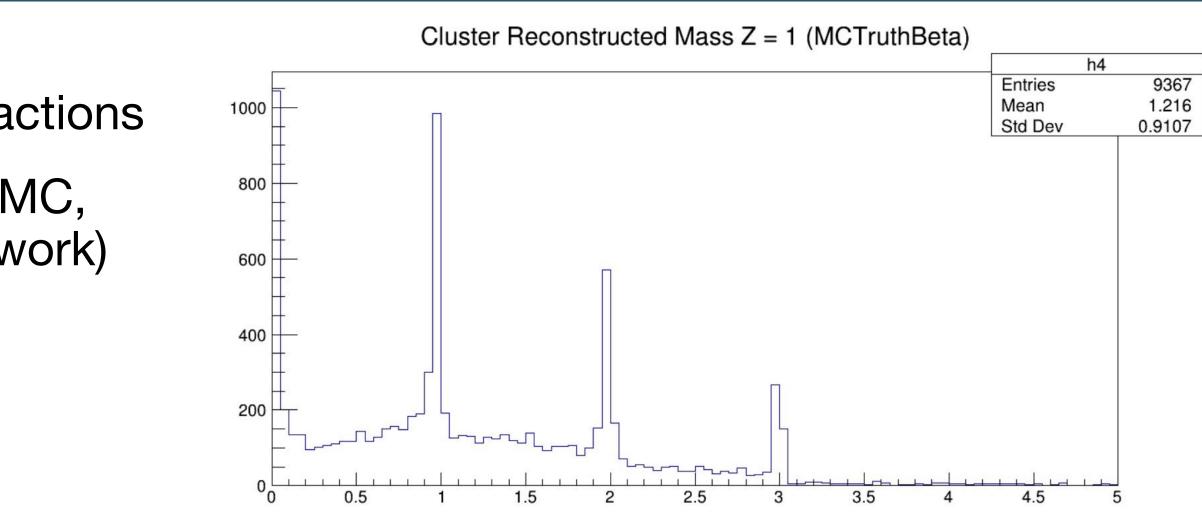


Important implications

- **Rejection of background** (out of target, combinatorial and cross feed) can be managed with **appropriate cuts / selections** (see Giacomo Ubaldi's talk):
 - \succ no need to implement anymore background subtraction technique from "no target" data (?)
 - \succ If verified also for the full setup (magnet included), this will allow us to save time during data collection
- Still room for detector reconstruction improvement (see VTX cluster size and MSD eta function useful for ghost removal and ZID algorithm). But now we can estimate the impact of their **implementation in the XS** (\rightarrow the most important removal of combinatorial background) and evaluate it in terms of manpower / time for publication
- A robust fragment Z identification, as the one reached within GSI 2021 analysis, allows to implement the inverse kinematic approach to measure H+O XS. We can implement an integrated cross section for the process H+O for the different fragment Z with GSI2021 data to show to the FOOT referees we're able to do it (this is something they've asked us to do)

What is still missing?

- The data analysis...:)
- To apply the full reconstruction to the data we still need to study many experimental effects and tuning the MC accordingly:
 - \blacktriangleright efficiency / thresholds of the trackers (considered protons excluded for the moment)
 - \blacktriangleright pile up in VT/IT, high rates effects (+ pile-up studies in MC to better understand our capability in rejecting it and to estimate a rejection efficiency)
 - \blacktriangleright Effects of rotation of the magnetic field / alignment with the full detector
 - \succ Tuning of the experimental resolutions in MC for every measured quantity not completed yet
 - \blacktriangleright Systematics on the implemented algorithms, geometry, analysis techniques
 - Further experimental effects correction (i.e. Tof worsening seen at CNAO 2023)



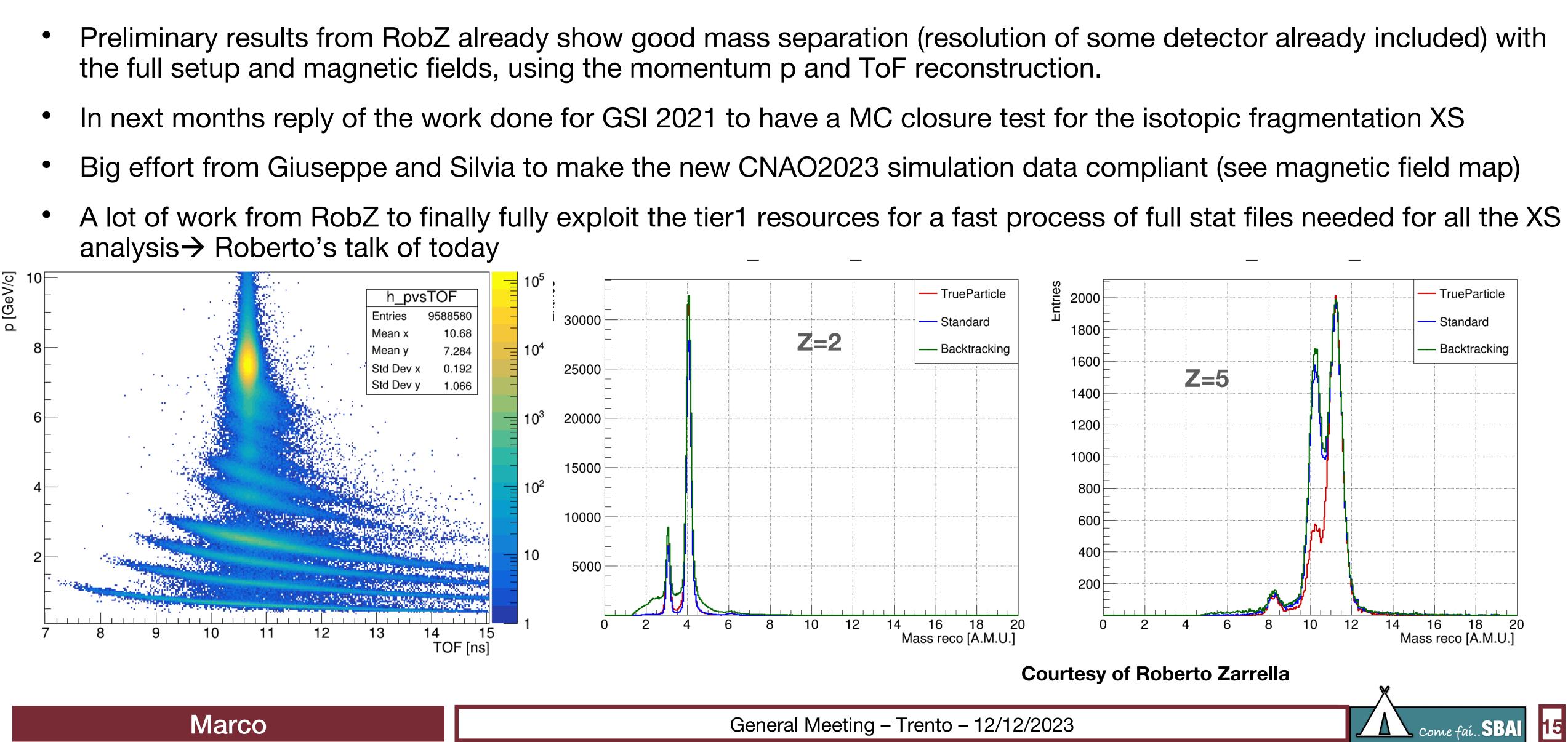
HIT2022 status

- Possibility to identify p, d, t and ³He in ⁴He+C interactions
- First attempt to identify them with ToF and Calo in MC, using true ToF (Alessandro, Francesca and Tino work)
- Calibrations of CALO and TW done

What is missing?

- Need to tune the tracking algorithm for this campaign (No VT) using backtracking developed by for GSI 2021 O @ 200MeV/u (no VTX included)
- Data analysis, study of efficiency of MSD to protons and tune the MC accordingly: \bullet
- Implement of TW calibration / resolution in shoe \bullet
- CALO reconstruction performances to be verified
- Have pile up, high rate effects, Tof worsening some impact in this setup? \bullet

RobZ and verify it with a MC closure test for XS. Vertexing in this case not included yet → useful also



CNAO2023 MC status

- analysis \rightarrow Roberto's talk of today

Analysis summary and manpower distribution


			1		
Campaign	MC analysis: Closure test (Efficiency, Purity, unfolding, background rejection)	Systematics	Raw Data analysis	Calo matching	Physics
GSI 2021	No track: Riccardo Tracking: Giacomo U.	No track: Riccardo	(*)	No calo	O+C, O+C ₂ H ₄ , O+H @ 400 MeV H+O inverse XS ?
GSI 2021	_	_	(*)	No calo	O+C, O+C ₂ H ₄ , O+H @ 200 MeV H+O inverse XS
HIT 2022	_	-	(*)	Mass spectra: Alessandro, Francesca, Tino	He+C @ 100, 140, 200, 220 MeV
CNAO 2022			(*)	-	C+C @ 200 MeV/u alpha clustering?
CNAO2023 (+ Full setup MC)	Tracking: RobZ alpha clustering: Milano	_	(*)	-	C+C, C ₂ H ₄ , C+H @ 200 MeV/u H+C (inverse XS) alpha clustering

(*) Some data analysis always performed in the proximity of the data taking (Pile-up, efficiency / thresholds, Fragmentation trigger, resolutions in data/MC analysis for different detectors, ...)

Marco

Analysis which share common reconstruction

Campaign	MC analysis: Closure test (Efficiency, Purity, unfolding, background rejection)	Systematics	Raw Data analysis	Calo matching	Physics
GSI 2021	No track: Riccardo Tracking: Giacomo U.	No track: Riccardo	(*)	No calo	O+C, O+C ₂ H ₄ , O+H @ 400 MeV H+O inverse XS ?
GSI 2021	-	_	(*)	No calo	O+C, O+C ₂ H ₄ , O+H @ 200 MeV H+O inverse XS
HIT 2022	_	_	(*)	Mass spectra: Alessandro, Francesca, Tino	He+C @ 100, 140, 200, 220 MeV
CNAO 2022			(*)	_	C+C @ 200 MeV/u alpha clustering?
CNAO2023 (+ Full setup MC)	Tracking: RobZ alpha clustering: Milano		(*)		C+C, C ₂ H ₄ , C+H @ 200 MeV/u H+C (inverse XS) alpha clustering

(*) Some data analysis always performed in the proximity of the data taking (Pile-up, efficiency / thresholds, Fragmentation trigger, resolutions in data/MC analysis for different detectors, ...)

Marco

V/u	
V/u	
v∕u	
/u	

Conclusions 1: FOOT priorities in XS analysis

Priority order set by referee requests:

- ✓ GSI 2021 (O @ 400MeV/u) data analysis finalization for the electronic setup
- ✓ GSI 2019 (O @ 200, 400MeV/u) data analysis finalization for the emulsion setup
- Implementation of a MC closure test for full setup / CNAO2023 analysis starting from the experience of the GSI2021 analysis and then relative data analysis
- \checkmark HIT 2022 (+ implementation of vertexing with backtracking algorithm)
- ✓ CNAO2017 setup
- ✓ GSI 2021 (O @ 200 MeV/u)
- CNAO2022 (C @ 200MeV/u electronic setups)
- CNAO2023 and GSI2020 (C @ 200MeV/u and 700 MeV/u emulsion setups)

Conclusions 2: titles for your next master student thesis

- Study of pile up in the high beam rate data runs acquired at CNAO 2023 + tuning in MC to study strategy and efficiency in pile-up rejection
- MSD eta function / charge equalization and implementation of ZID and ghost removal
- MSD and VTX efficiency / threshold study in data and tuning in MC
- To perform mass identification with CALO we need a calibration along the full energy range of interest: it can be done using Ekin information from Tof measured by TW-SC for each Z for TW points matched to the CALO
- To perform measurements of protons with the electronic setup we need to study the thresholds in TW: it could be done using physics data using energy information from the calorimeter once calibrated
- If we're able to reject the out of target fragmentation and so also to reject the pre-target fragmentation \rightarrow possibility to explore pro and cons of greater thickness for SC (ToF improvement / mass separation wrt Eloss / loss of statistics)

Work in progress for the Analysis

Analysis working group:

- First milestone: to have as soon as possible a full reconstruction "under control" able to produce cross sections and verify them with a MC closure test.
- At this moment FOOT doesn't know what is the precision it can reach in measuring MC cross section (and for data will be worse)
- Ongoing analysis for GSI2021 data \rightarrow talks of Riccardo and Giacomo (Ubaldi)

• **TW working group:**

- Matteo/Esther -> studying thresholds and resolutions for GSI 2021 campaign -> talk today
- Aafke -> taking care of TW calibration @ CNAO2022 -> talk today
- Tino/Miriam -> taking care of TW calibration @ HIT2022 -> talk today
- RobZ-> Already provided positions calibrations for all campaigns -> talk today
- me -> taking care of TW reco in shoe and fix/update in order to have performance plots ok for every campaign

Work in progress for the Analysis

- **CALO** working group:
 - CALO guys provided calibration @ CNAO and HIT 2022 -> talk today
 - Alessandro/Francesca/Tino candidate for TW-calo match for HIT2022 to produce mass distributions (following calo and TW calib)
- **MSD** working group:
 - Matteo/new master student-> new clustering + eta function @ HIT2022
 - Leonello/Benedetto -> MSD efficiencies with protons @ Trento
 - Gianluigi/Lucia -> working on pedestals @ HIT2022 \rightarrow talk today
 - Tino -> efficiencies @ HIT2022
- MC group:
 - Giuseppe and Silvia produced all the MC campaigns relative to data taking and full setup

Work in progress for the Analysis

BM:

Yun is working on improvement of BM tracking algorithm -> talk today

• SC:

Giacomo is working on the ToF worsening observed expecially at CNAO2023

• VTX:

 Giacomo Ubaldi with Chris supervision is taking care of studying VTX algorithm performances -> talk today

• Glb tracking:

Rob, Giacomo Ubaldi and Matteo studying performances of Glb tracking and methods to reject bkg

General Meeting – Trento – 12/12/2023

