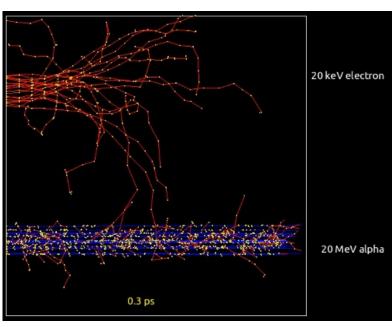


geant4-dna.org

Chem3 example

Chemistry examples


Presenter: Serena Fattori INFN - LNS, Catania, Italy serena.fattori@lns.infn.it

<u>XI International Geant4 School</u> Pavia, Italy 18/01/2024

Geant4.11.2.0 Released 08 Dec 2023

Processes in the Physical Stage

Geant4-DNA simulation

			Branching ratio (%)		
Ionization	H_2O^+	$H_3O^+ + OH$	100	100	Ionization
		H. + .OH	65	65	A1B1_DissociationDecay
	A^1B_1	$H_2O + \Delta E$	35	35	No displacement
		$H_3O^+ + OH + e_{ag}$	50	55	Auto-Ionization
		Н. + .ОН	25.35	-	A1B1_DissociationDecay
Excitation	B^1A_1	$H_2 + 2 \cdot OH$	3.25	15	B1A1_DissociationDecay
		2H•+O(3P)*	3.9	-	B1A1_DissociationDecay2
		$H_2O + \Delta E$	17.5	30	No displacement
	Rydberg A+B, C+D, Diffuse bands	$H_3O^+ + OH + e_{ag}$	50	50	Auto-Ionization
		$H_2O + \Delta E$	50	50	No displacement
	DEA	$OH^- + OH + H_2$	100	100	Dissociative attachment
		H. + .OH	35.75	55	A1B1_DissociationDecay
Electron capture	Recombinat -ion	H ₂ + 2•OH	13.65	15	B1A1_DissociationDecay
		2H•+O(3P)	15.6	-	B1A1_DissociationDecay2
		$H_2O + \Delta E$	35	30	No displacement

W.-G. Shin, et al., Phys. Med. (2021)

Processes in the Chemical Stage

proton

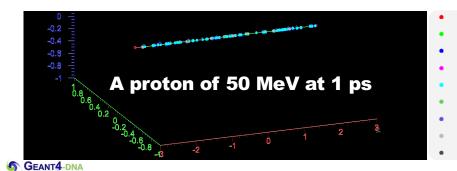
e-1

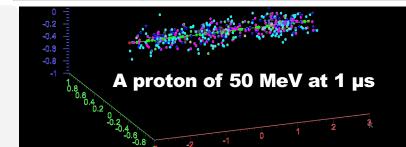
OH

H₃O¹ H⁰ OH⁻¹ H⁰₂

 $H_2O_2^2$

Chemical Species: DIFFUSION


Water Molecules:

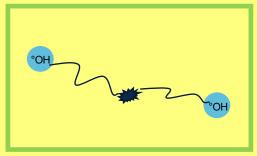

- → Electron Hole Recombination
- → Water Dissociation

Species	Diffusion coefficient D (10 ⁻⁹ m ² s ⁻¹)
H₃O⁺	9.0
H•	7.0
OH-	5.0
e⁻ _{aq}	4.9
H ₂	5.0
•OH	2.8
H_2O_2	1.4

REACTIONS

Reactants	Products	Rate [1e-3 * m3 / (mole * s)]
e ⁻ _{aq} + e ⁻ _{aq} + 2H2O	H ₂ + 20H ⁻	0.5e10
e⁻ _{aq} + •OH	OH-	2.95e10
e ⁻ _{aq} + H• + H ₂ O	H ₂ + OH ⁻	2.65e10
e⁻ _{aq} + H ₃ O⁺	H• + H ₂ O	2.11e10
e ⁻ _{aq} + H ₂ O ₂	OH⁻ + •OH	1.41e10
•OH + •OH	H ₂ O ₂	0.44e10
*OH + •H	H ₂ O	1.44e10
*H + •H	H ₂	1.20e10
H ₃ O ⁺ + OH ⁻	2H2O	1.43e11

3

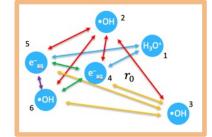

Chemistry Models

SBS model

At each step (bigger than a Minimum Time Step) the separation distance "d" of all pairs of reactants is checked.

Two species react with each other when d is below a given threshold "R", called reaction radius.

The Brownian bridge technique compensate for possible missed reactions.

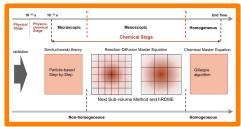

Karamitros, M. et al. (2014) Diffusion-controlled reactions modeling in Geant4-DNA. Journal of Computational Physics, 274, 841-882. https://doi.org/10.1016/j.jcp.2014.06.011

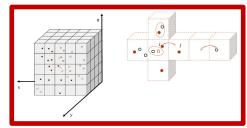
IRT model

An event table is constructed with the initial chemical species positions and reaction times (calculated with probability functions) for each reactant pair of interest.

Table's entries are sorted in ascending reaction time order and then processed.

Reaction product positions are randomly sampled within a sphere centred at the reaction site.


Karamitros, M. et al. (2020) Implementing the Independent Reaction Time method in Geant4 for radiation chemistry simulations. https://doi.org/10.48550/arXiv.2006.14225


Ramos-Méndez, J. et al. (2020) Independent reaction times method in Geant4-DNA: Implementation and performance. https://doi.org/10.1002/mp.14490

SBS-RDME model

Combination of:

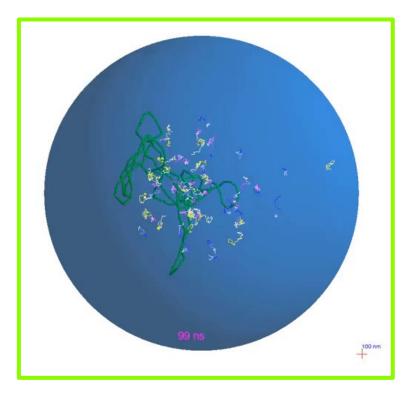
- SBS model
- Compartment-based model using RDME (Reaction-Diffusion Master Equation)

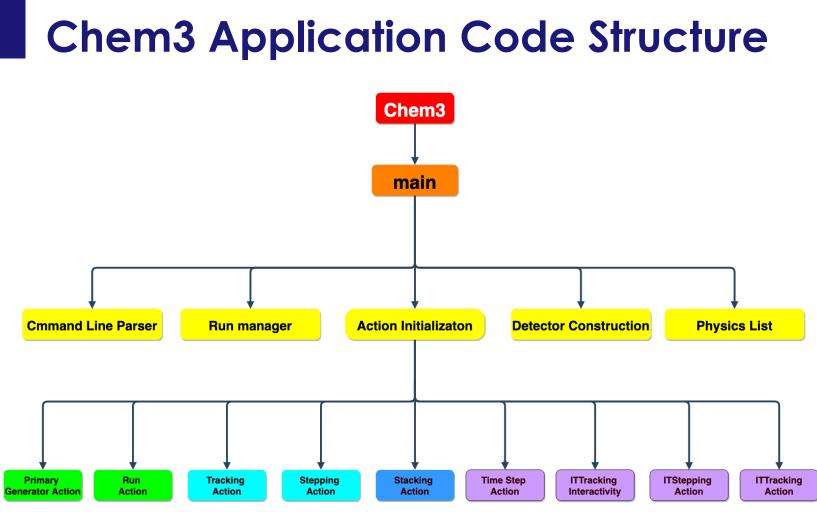
Tran, H. N. et al. (2021) Geant4-DNA Modeling of Water Radiolysis beyond the Microsecond: An On-Lattice Stochastic Approach. International Journal of Molecular Sciences, 22(11), 6023. <u>https://doi.org/10.3390/ijms22116023</u>

The Chemistry Examples

example/extended/medical/dna

- The « chem1 » example illustrates how to activate the simulation of water radiolysis (step-bystep method).
- The « chem2 » example illustrates how to set minimum time step limits on water radiolysis (step-by-step method).
- The « chem3 » example illustrates how to implement user actions in the chemistry module (step-by-step method).
- The « chem4 » example illustrates how to compute radiochemical yields ("G") versus time, including a dedicated ROOT graphical interface (step-by-step method).
- The « chem5 » example illustrates how to compute radiochemical yields ("G") versus time, using alternative physics and chemistry lists (step-by-step method).
- The « chem6 » example illustrates how to compute radiochemical yields ("G") versus time and LET using IRT method.
- The « scavenger » example illustrates how to simulate scavenging using an easy-to-use interface and the IRT method.
- The « UHDR » extended/medical/dna example illustrates how to activate the chemistry mesoscopic model in combination with the step-by-step model, and allows to simulate chemical reactions beyond 1 us post-irradiation.

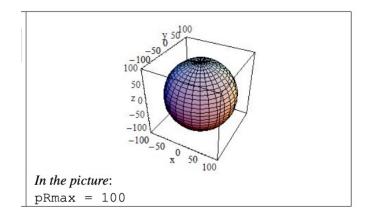

Chem3 example

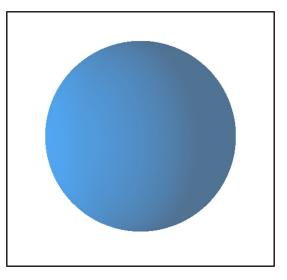

AUTHOR: Mathieu Karamitros MAINTEINER: Hoang N. Tran

Chem3 Example

Illustrates how to implement <mark>user actions</mark> in the chemistry module using the step-by-step model.

Users can also visualize the trajectories of the chemical species in time and space using the graphical user interface.


Chem3 Application Code Structure


chem3.cc	Main file ⇒ creation of RunManager, DetectorConstruction, PhysicsList, PrimaryGeneratorAction, ActionInitialization
→ RunManager	Management of all the calls to Geant4 kernel and the threads in MT mode
\rightarrow DetectorConstruction	Definition of the geometry: World as semi-transparent sphere
→ PhysicsList	Choice of the physics & chemistry lists Default Physics → G4EmDNAPhysics Default Chemistry → G4EmDNAChemistry Chemistry Model → SBS
→ ActionInitialization	Build() ⇒ creation of PrimaryGeneratorAction & optional user action classes: RunAction, TrackingAction, SteppingAction, StackingAction, TimeStepAction, ITTrackingInteractivity, ITTrackingAction, ITSteppingAction
→ PrimaryGeneratorAction	Choice of the primary particle. Default: 30 MeV Proton

Chem3 Application Code Structure

→ RunAction	To retrieve information in the Beginning and in the End of Run. \rightarrow In the EndOfRun gives in output the Seed used.
→ TrackingAction	To retrieve information of the Track. At the end of the Primary Track it gives in output the final kinetic energy of the primary.
\rightarrow SteppingAction	To retrieve information from a given "step".
→ StackingAction	When no more "physical tracks" remain, the method StackingAction::NewStage is called → The Chemistry Stage starts.
→ TimeStepAction	Allows the user to set minimal time step values and to retrieve information from a given time step (molecule names, reaction products, etc).
→ ITTrackingInteractivity	Mandatory to visualize chemical tracks and use stepping/tracking actions.
\rightarrow ITTrackingAction	To retrieve information from a given track. Similar to TrackingAction but for chemistry.
\rightarrow ITSteppingAction	To retrieve information from a given track. Similar to SteppingAction but for chemistry.

Geometry Definition

- The World Volume is a G4ORB
- Two parameters define the geometry :
 - the material of the Sphere \rightarrow for Geant4-DNA it has to be water.
 - the radius of the Sphere: double worldRadius = 0.3*micrometer;

Physics / Chemistry List

Physics Models Included:

- G4EmDNAPhysics_option1
- G4EmDNAPhysics_option2
- G4EmDNAPhysics_option3
- G4EmDNAPhysics_option4
- G4EmDNAPhysics_option5
- G4EmDNAPhysics_option6
- G4EmDNAPhysics_option7
- G4EmDNAPhysics_option8

Chemistry Models Included:

- G4EmDNAChemistry_option1

N.B.

If the CommandLineParser has the flag "chemOFF" the chemistry is switched off.

Primary Generator

The primary kinematic consists of a single particle starting at the center of the sphere.

Particle type Particle energy Particle initial position Particle initial direction are set in the PrimaryGeneratorAction class, and can be changed via the G4 build-in commands of G4ParticleGun class.

The chemistry module is triggered in the StackingAction class when all physical tracks have been processed. default: 30 MeV Proton

/gun/particle e-/gun/energy 1 keV /gun/position 0 0 0 micrometer /gun/direction 0 0 1

TimeStepAction

In ActionInitilialisation: G4Scheduler::Instance()->SetUserAction(new TimeStepAction());

Methods

TimeStepAction(): Constructor of the TimeStepAction class. Inside it you can set the minimal time steps of your simulation.

AddTimeStep(1 * picosecond, 0.1 * picosecond);	During the first simulated picosecond the minimal time step will be of 0.1 picosecond. If molecules are too close and can react before that time limit: Brownian bridge.
AddTimeStep(10 * picosecond, 1 * picosecond);	From 1 ps to 10 ps in simulation time, the minimal time step will be of 1 ps.

TimeStepAction

In ActionInitilialisation: G4Scheduler::Instance()->SetUserAction(new TimeStepAction());

Methods

- **StartProcessing()**: Beginning of the chemistry simulation.
- EndProcessing(): End of the chemistry simulation.
- UserPreTimeStepAction(): If the user wants to do something before the start of the current time step.
- UserPostTimeStepAction(): If the user wants to do something after the end of the current time step. Called once after stepping all the tracks.
- UserReactionAction(Reactif1, Reactif2, Products): will be called just after a reaction happened.

How to start?

- Create your own simulation folder, i.e. "my-simulations"
- Copy the chem3 example in "my-simulations"
- Create a build folder for chem3, i.e. "chem3-build"
- Enter inside "chem3-build" and execute the cmake command: cmake path-of-geant4-install path of chem3
- Source the geant4.sh: cd path-of-geant4-install/bin source geant4.sh cd –
- Compile the example: make -jn (with n = number of cores available in your machine)
- In the terminal window, inside your chem3-build folder:
 ./chem3 -gui tcsh or ./chem3 -gui qt
- In the gui window: /control/execute beam.in

beam.in Macro Commands

#/tracking/verbose 1 /gun/position 0 0 0 micrometer /gun/direction 0 0 1 /gun/particle e-/gun/energy 1 keV # # NB: comment lines when the flag chemOFF is used #/scheduler/verbose 2 #/scheduler/whyDoYouStop ______ # /run/beamOn 1

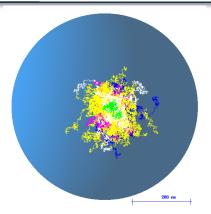
=> Print information

=> Define the source

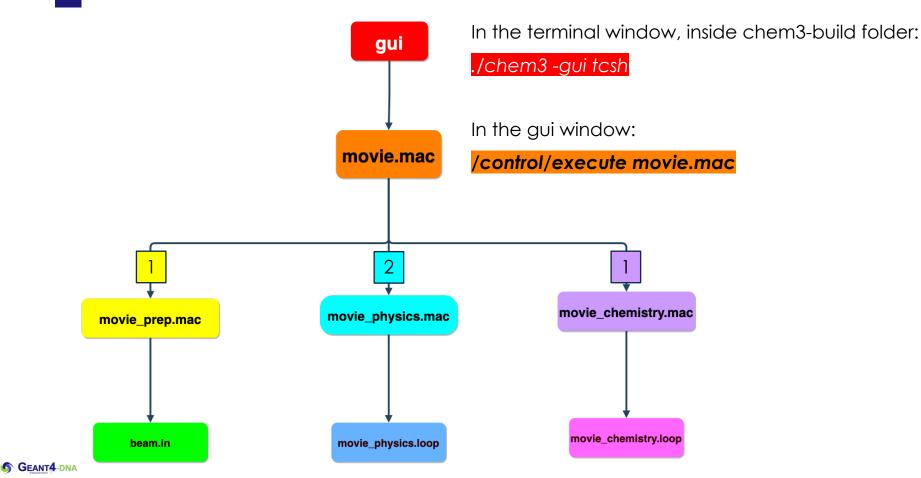
=> Print additinal chemistry information

=> Define the number of primary events

Output


Defined reaction table

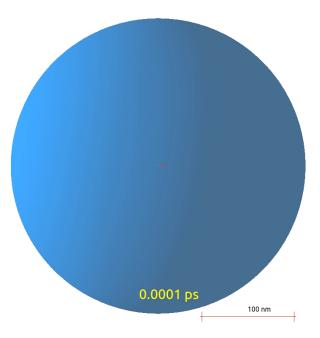
Physics stage ends Number of chemical species involved in reac Reaction		Interaction Range for chosen reaction model [nm]
H30^1 + e_aq^-1 -> H^0	2.11e+10	0.200589
H30^1 + OH^-1 -> No product	1.43e+11	1.34973
OH^0 + e_aq^-1 -> OH^-1	2.95e+10	0.506256
OH^0 + OH^0 -> H202^0	4.4e+09	0.207651
OH^0 + H^0 -> No product	1.44e+10	0.194167
e_aq^-1 + e_aq^-1 -> OH^-1 + OH^-1 + H_2^0	5e+09	0.134838
e_aq^-1 + H^0 -> OH^-1 + H_2^0	2.65e+10	0.294265
e_aq^-1 + H2O2^0 -> OH^-1 + OH^0	1.41e+10	0.295745
H^0 + H^0 -> H 2^0	1.2e+10	0.226528


Chemical reactions

Physics stage ends						
**** G4Scheduler starts processing						
At time : 1 ps Reaction : OH^-1 (-112) + H3O^1 (-166) -> No product						
At time : 24.53 ps Reaction : OH^0 (-145) + OH^0 (-173) -> H202^0 (-220)						
At time : 37.218 ps Reaction : 0H^0 (-157) + e_aq^-1 (-72) -> 0H^-1 (-221)						
At time : 58.705 ps Reaction : H^0 (-211) + H^0 (-215) -> H_2^0 (-222)						
At time : 84.673 ps Reaction : 0H^0 (-167) + 0H^0 (-175) -> H202^0 (-223)						
At time : 86.673 ps Reaction : 0H^0 (-153) + 0H^0 (-127) -> H202^0 (-224)						
At time : 90,673 ps Reaction : 0H^0 (-151) + H^0 (-217) -> No product						
At time : 132.29 ps Reaction : 0H^0 (-143) + 0H^0 (-183) -> H202^0 (-225)						
At time : 171.29 ps Reaction : H30^1 (-148) + OH^-1 (-221) -> No product						
At time : 401.3 ps Reaction : 0H^0 (-185) + 0H^0 (-161) -> H202^0 (-226)						
At time : 486.46 ps Reaction : 0H^0 (-155) + e_aq^-1 (-20) -> 0H^-1 (-227)						
At time : 489.46 ps Reaction : H30^1 (-184) + OH^-1 (-227) -> No product						
At time : 549.27 ps Reaction : OH^0 (-141) + e_aq^-1 (-94) -> OH^-1 (-228)						
At time : 582.27 ps Reaction : OH^0 (-205) + e ag^-1 (-99) -> OH^-1 (-229)						
At time : 637.1 ps Reaction : 0H^0 (-137) + 0H^0 (-218) -> H202^0 (-230)						
At time : 726.44 ps Reaction : e ag^-1 (-190) + 0H^0 (-181) -> 0H^-1 (-231						
At time : 774.65 ps Reaction : 0H^0 (-216) + 0H^0 (-206) -> H202^0 (-232)						
At time : 1.0033 ns Reaction : H30^1 (-130) + OH^-1 (-229) -> No product						
At time : 1.4536 ns Reaction : 0H^0 (-197) + 0H^0 (-209) -> H202^0 (-233)						
At time : 2.0366 ns Reaction : H30^1 (-182) + e_aq^-1 (-44) -> H^0 (-234)						
At time : 2.801 ns Reaction : 0H^0 (-179) + 0H^0 (-121) -> H202^0 (-235)						
At time : 3.004 ns Reaction : H30^1 (-198) + e_ag^-1 (-73) -> H^0 (-236)						
At time : 3.4335 ns Reaction : $e_{aq} - 1 (-199) + 0H^{2} (-169) \rightarrow 0H^{-1} (-237)$						
At time : 3.5283 ns Reaction : $H30^{1}(-160) + 0H^{-1}(-237) \rightarrow No product$						
At time: 3.9539 ns Reaction: $H30^{1}(-186) + 0H^{-1}(-231) \rightarrow No product$						
At time: 4.2798 ns Reaction: $e_{aq} = 1$ (-88) + H a (-203) -						
> 0H-1 (-238) + H 2^0 (-239)						
At time : 4.6319 ns Reaction : $0H^{-1}(-228) + H30^{-1}(-134) \rightarrow No product$						
At time: 4.776 ns Reaction: $H30^{1}(-146) + e_{aq}^{-1}(-39) \rightarrow H^{0}(-240)$						
At time: 5.1574 ns Reaction: $0H^{\circ}0(-147) + e_aq^{-1}(-110) \rightarrow 0H^{-1}(-241)$						
At time: 6.4734 ns Reaction: $H30^{-1}(-172) + e_aq^{-1}(-51) \rightarrow H^{0}0(-242)$						
At time: 5.4734 is Reaction: $1301(-172) + e_{-}aq^{-1}(-31) - 100(-242)$ At time: 7.4096 is Reaction: $e_{-}aq^{-1}(-108) + H^{-}0(-219) - 100(-242)$						
> 0H^-1 (-243) + H 2^0 (-244)						
At time : 8.1618 ns Reaction : $0H^{0}(-113) + 0H^{0}(-115) -> H202^{0}(-245)$						
At time : 0.1010 ns Reaction : 010^{-113} + 010^{-1} (-124) - No product						
At time : 13.103 ns Reaction : has $1(-1)^4$ + $0n^{-1}(-241)^{-2}$ No product						
$> 0H^{-1}(-246) + 0H^{0}(-247)$						
At time : $16,403$ ns Reaction : $e ag^{-1}(-22) + 0H^{0}(-165) \rightarrow 0H^{-1}(-248)$						
At time: 17.403 ns Reaction: $e_{-4}q = 1(-22) + 0H^{-6}(-163) -> H202^{-6}(-149)$ At time: 17.403 ns Reaction: $0H^{-6}(-133) + 0H^{-6}(-214) -> H202^{-6}(-249)$						
At time: 11.405 ns Reaction: $On O (-155) + On O (-214) -> n202 O (-249)$ At time: 21.626 ns Reaction: $e ag^{-1} (-87) + OH^{-0} (-125) -> OH^{-1} (-250)$						
At time: 25.091 ns Reaction: $e_aq^{-1}(-87) + e_aq^{-1}(-37) -> 0h^{-1}(-250)$						
At time: 25.291 ns Reaction: $00^{-1}(-187) + 6_{-1}(-37) -> 00^{-1}(-251)$ At time: 25.291 ns Reaction: $H30^{-1}(-132) + 00^{-1}(-246) -> No product$						
At time : 25.291 ns Reaction : $H30^{-1}(-132) + 0H^{-1}(-246) \rightarrow No product At time : 33.488 ns Reaction : H30^{-1}(-155) + 0H^{-1}(-251) \rightarrow No product$						
At time : 33.588 ns Reaction : $H3O^{-1}(-195) + OH^{-1}(-251) - NO product$ At time : 33.588 ns Reaction : $H2O2^{-0}(-226) + e a_0^{-1}(-50) - C$						
At time: 33.588 ns Reaction: $n_202^{-6}(-226) + e_aq^{-1}(-50) - 000 - 1(-522) + 0000 (-253)$						
> $Orr -1$ (-252) + $Orr 0$ (-253) At time : 43.671 ns Reaction : H30^1 (-142) + OH^{-1} (-250) -> No product						
At time : 43.671 ns Reaction : $H30^{-1}(-142) + 0H^{-1}(-250) \rightarrow No product At time : 56.551 ns Reaction : e aq^{-1}(-85) + 0H^{-0}(-208) \rightarrow 0H^{-1}(-254)$						
At time : 56.551 ns Reaction : $e_{-}aq^{-}1$ (-85) + $OH^{-}0$ (-208) -> $OH^{-}1$ (-254) **** 64Scheduler ends at time : 100 ns						
*** G45cheduter ends at time : 100 hs						

- G4Physics initialization and the defined reaction table are printed.
- ITStepManager processes the chemical stage time step after time step.
- Chemical reactions are printed.
- In the GUI window a cumulative trajectory of the chemical species is drawn.

Movie Macros Scheme



Time Evolution Visualization

- User can start a visualization of the chemical track evolution in time and space using /control/execute movie.mac
- Note, that in default setup the simulation requires machine with <u>6 GB of RAM</u>.
- To lower memory requirements, either:
 decrease energy of the incident electron in beam.in

or/and

 shorten the simulation using SetEndTime setting in src/ActionInitialization.cc → default 100 ns and in movie_chemistry.mac

More Information

Welcome to the web page of the Geant4-DNA project !

The Geant4 general purpose particle-matter Monte Carlo simulation toolkit is being extended with processes for the **modeling of biological damage induced by ionising radiation at the DNA scale**. Such developments are on-going in the framework of the Geant4-DNA project. This project was originally initiated by the European Space Agency (ESA). Developments are undertaken by an international collaboration, coordinated since 2008 by the National Institute of Nuclear and Particle Physics (IN2P3) of the National Centre for Scientific Research (CNRS) in France, in collaboration with the Geant4@IN2P3 activities.

Once published, all developments are freely accessible in **full open access** through the Geant4 toolkit or through our freely accessible Geant4 Virtual Machine.

Recent posts

June 27th, 2023 : Geant4 11.1.2 LP2i Virtual Machine has been released, see link.

Exercises

- **Exercise 1**: Run as it is the beam.in macro
- **Exercise 2**: Change the type of particle and re-run the beam.in
- **Exercise 3**: Change the particle energy and re-run beam.in
- **Exercise 4**: Change the dimension of the sphere and re-run the beam.in
- **Exercise 5**: Run as it is the movie.mac macro
- **Exercise 6**: Change the type of particle and re-run the movie.mac
- **Exercise 7**: Change the particle energy and re-run movie.mac
- **Exercise 8**: Change the dimension of the sphere and re-run the movie.mac
- **Exercise 9**: Change the "endTime" of the chemistry movie (suggestion: via macro)
- **Exercise 10**: Change the EndTime of the chemistry execution (suggestion: in the proper class...)

Exercise 1: Run as it is the beam.in macro

./chem3 -gui tcsh

	🚞 chem3-build-11.2.0.beta — chem3 -gui t	csh — 126×50	000	beam.in
ysics stage ends			Ball < > ■ beam.in	₹ ≣0 (
mber of chemical species involved in rea action		Interaction Range for chosen reaction model [nm	beam.in) No Selection	
			,	
		0.200589		000 micrometer n 001
			4 /gun/particle	
H^0 + e ag^-1 -> 0H^-1	2.95e+10	0.506256	6 #	
1^0 + 0H^0 -> H202^0	4.4e+09	0.207651	8 # NB: comment	lines related to scheduler when the flag chemOFF is used
				hyDoYouStop
ag^-1 + e ag^-1 -> 0H^-1 + 0H^-1 + H 2^0	0 5e+09	0.134838	12 #	
		n 204265	13 /run/beamOn 1 14	
			14	V viewer-0 (OpenGLStoredX)
_aq^-1 + H202^0 -> 0H^-1 + 0H^0		0.295745		Viewer-0 (OpenioLStoredX)
		07)		
* G4Scheduler starts processing time : 1 ps Reaction : OH^O (-20	$\begin{array}{llllllllllllllllllllllllllllllllllll$	07) 08) 09) 210) ct ct 213) 214) 15) ct 16) 217) 18) ct 219) 220) ct 219 222)		

Exercise 2: Change the type of particle and re-run the beam.in

./chem3 -gui tcsh

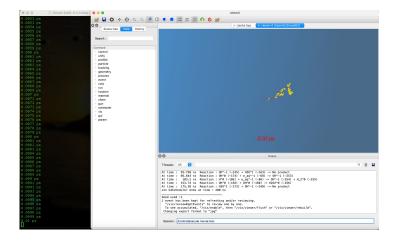
• • •	📄 chem3-build-11.2.0.beta –	– chem3 -gui tcsh — 126×50	•••	•	beam.in
<pre>coni: for pi- XStype:3 SubType=2 dE/dx and range tables from 10 et Lambda tables from threshold to 3 StepFunction=(0.1, 0.05 mm), inte ===== EM models for the G4Region ICRU73Q0 : Emin= 0 eV E BetheBloch : Emin=297.505 keV dof tracking primary particle, its 1</pre>	300 MeV, 20 bins/decade, s ≥g: 3, fluct: 1, linLossL DefaultRegionForTheWorlc max=297.505 keV deltaVI / Emax= 300 MeV deltaVI	spline: 1 im= 0.01 d ======	1 2 3 4 5	<pre>beam.in m.in) No Selection #/tracking/verbose 1 /gun/position 0 0 0 m /gun/intection 0 0 1 /gun/particle e+ /gun/nergy 1 keV #</pre>	d EO ∣
nysics stage ends umber of chemical species involved in eaction			en reaction model [nm] 9	<pre>#====================================</pre>	top
				/run/beamOn 1	
					2 characters
H^0 + OH^0 -> H2O2^0	4.4e+09	0.207651			2 characters
	1.44e+10	0.194167			
$aq^{-1} + e aq^{-1} -> 0H^{-1} + 0H^{-1} + H$	2^0 5e+09	0.134838			
ag^-1 + H202^0 -> 0H^-1 + 0H^0	1.41e+10	0.295745			
 ^0 + H^0 -> H_2^0	1.2e+10	0.226528			
NAMolecularStepByStepModel will be use ** G4Scheduler starts processing t time: 2.132 ps Reaction : $0H^{\circ}0$ (t time: 2.4574 ps Reaction : $e_{-}aq^{\circ}$ t time: 949.97 ps Reaction : $H^{\circ}0$ (t time: 1.8943 ns Reaction : $e_{-}aq^{\circ}$ t time: 9.4513 ns Reaction : $e_{-}aq^{\circ}$ t time: 12.343 ns Reaction : $H^{\circ}0$ (t time: 12.343 ns Reaction : $H^{\circ}0$ (t time: 12.343 ns Reaction : $H^{\circ}0$ (t time: 14.985 ns Reaction : $H^{\circ}1$ t time: 17.072 ns Reaction : $e_{-}aq^{\circ}$ ** G4Scheduler ends at time: 200 ns eed used i1 event has been kept for refreshing an	ed $(-54) + 0H^{0} (-49) -> H200$ $(-(-52) + 0H^{0} (-62) -> 0$ $(-58) + H30^{0} (-37) -> Ne$ $(-59) + 0H^{0} (-44) -> No p$ $(-(-18) + 0H^{0} (-55) -> H200$ $(-51) + 0H^{0} (-55) -> H20$ $(-71) + H30^{0} (-66) -> No p$ $(-71) + H30^{0} (-(-43) -> Ne$ $(-71) + H30^{0} (-(-66) -> 0$ $(-71) + H30^{0} (-66) -> 0$ $(-71) + 0H^{0} (-66) -> 0$	2^0 (-67) 0H^-1 (-68) o product roduct 0H^-1 (-69) 2^0 (-70) H^-1 (-71) roduct o product		14	
"/vis/reviewKeptEvents" to review one	e by one.				
To see accumulated, "/vis/enable", the Π					200 mm

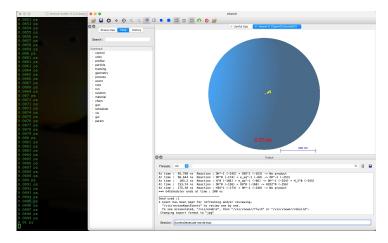
Exercise 3: Change the particle energy and re-run beam.in

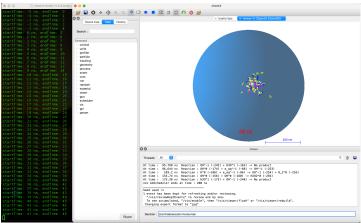
./chem3 -gui tcsh

• • •	📄 chem3-build-11.2.0.beta — chem3 -gui	tcsh — 126×50	💿 💿 🕒 🕒 beam.in	
BetheBloch : Emin=297.505 ke	V Emax= 300 MeV deltaVI		88 I < >	=0
VentzelVIUni : Emin= 0 eV StepLim=Minimal Rfact=0.2 Gf Ioni: for pi- XStype:3 SubType=2 dE/dx and range tables from 10 e Lambda tables from threshold to StepFunction=(0.1, 0.05 mm), int ===== EM models for the G4Region ICRU7300 : Emin= 0 eV BetheBloch : Emin=297.505 ke nd of tracking primary particle, its hysics stage ends umber of chemical species involved in	act=2.5 Sfact=0.6 DispFlag:0 Skin= V to 300 MeV in 140 bins 300 MeV, 20 bins/dccade, spline: 1 eg: 3, fluct: 1, linLossLim= 0.01 DefaultRegionForTheWorld ====== Emax=297.505 keV deltaVI Final energy is :9.79727 keV reactions = 6		<pre>beam in) No Selection #/tracking/verbose 1 /gun/position 0 0 0 micrometer /gun/direction 0 0 1 /gun/particle e- /gun/energy 10 KeV # 7 #======================</pre>	s used
30^1 + e ag^-1 -> H^0				
H^0 + OH^0 -> H202^0	4.4e+09			
		0.134838		
		0.294265		
_aq^-1 + H202^0 -> OH^-1 + OH^0			the second se	
	1.2e+10	0.226528		
NAMolecularStepByStepModel will be us *** G4Scheduler starts processing tt time : 228.93 ps Reaction : 0H^0 At time : 1.6143 ns Reaction : 0H^0 At time : 6.9922 ns Reaction : e_aq^ *** G4Scheduler ends at time : 200 ns Geed used :1 L event has been kept for refreshing a "/vis/reviewKeptEvents" to review on	ed (-35) + H^0 (-45) -> No product (-46) + H^0 (-47) -> No product -1 (-10) + OH*0 (-39) -> OH^-1 (-4 -1 (-23) + OH*0 (-43) -> OH*-1 (-4 nd/or reviewing.			

Exercise 4: Change the dimension of the sphere and re-run the beam.in

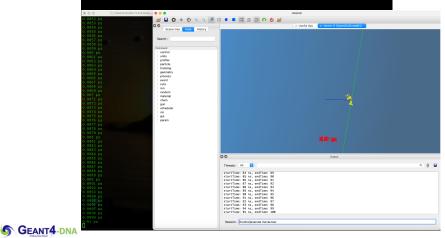

make

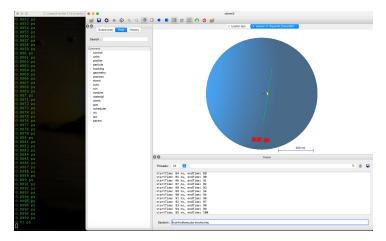

./chem3 -gui tcsh

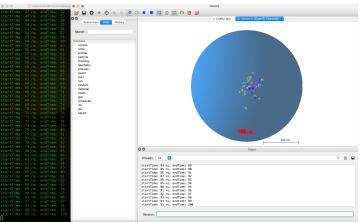

• • •	chem3-build-11.2.0.beta — chem3 -gui tcsh — 126×50	000	viewer-0 (OpenGLStoredX)
At time : 61.718 p At time : 146.32 p At time : 146.32 p At time : 229.64 p At time : 325.08 p At time : 335.08 p At time : 335.08 p At time : 341.08 p At time : 388.11 p At time : 559.35 p At time : 661.87 p At time : 732.01 p At time : 732.01 p At time : 1.8395 n At time : 1.8395 n At time : 1.8395 n At time : 2.2587 n At time : 2.2587 n At time : 3.9594 n At time : 3.9594 n At time : 4.3075 n At time : 4.3881 n	rts processing s Reaction : OH^00 (-204) + OH^00 (-205) -> H202^0 (-206) s Reaction : OH^00 (-122) + OH^00 (-112) -> H202^0 (-207) s Reaction : OH^0 (-122) + OH^00 (-164) -> H202^0 (-208) s Reaction : H200^0 (-2124) + OH^00 (-144) -> OH^-1 (-210) s Reaction : H200^0 (-206) + e $a_3^{A-1} (-41) -> OH^{A-1} (-211) + OH^{A0} (-212)$ s Reaction : H200^0 (-206) + e $a_3^{A-1} (-41) -> OH^{A-1} (-211) + OH^{A0} (-212)$ s Reaction : $a_3^{A-1} (-199) + OH^{A0} (-143) -> OH^{A-1} (-211) + OH^{A0} (-212)$ s Reaction : $a_3^{A-1} (-191) + OH^{A0} (-143) -> OH^{A-1} (-213)$ s Reaction : $a_3^{A-1} (-191) + OH^{A0} (-172) -> H202^{A0} (-215)$ s Reaction : $OH^{A0} (-123) + H30^{A1} (-149) -> No product s Reaction : OH^{A-1} (-213) + H30^{A1} (-149) -> No product s Reaction : OH^{A-1} (-121) + H30^{A1} (-115) -> H^{A0} (-217) s Reaction : OH^{A-1} (-123) + H30^{A1} (-171) -> H202^{A0} (-217)s Reaction : e_3q^{A-1} (-34) + H30^{A1} (-171) -> No product s Reaction : OH^{A-1} (-210) + H30^{A1} (-172) -> H0 (-218)s Reaction : e_3q^{A-1} (-33) + OH^{A0} (-152) -> OH^{A-1} (-219)s Reaction : e_3q^{A-1} (-33) + OH^{A0} (-152) -> No product s Reaction : e_3q^{A-1} (-33) + OH^{A0} (-1202) -> H0^{A-1} (-219)s Reaction : e_3q^{A-1} (-30) + H30^{A1} (-172) -> H0 (-221)s Reaction : e_3q^{A-1} (-30) + H30^{A1} (-172) -> H^{A0} (-221)s Reaction : e_3q^{A-1} (-107) + OH^{A-1} (-219) -> No product s Reaction : e_3q^{A-1} (-50) + OH^{A0} (-162) -> OH^{A-1} (-222)s Reaction : e_3q^{A-1} (-107) + OH^{A-1} (-210) -> H00^{A-1} (-222)s Reaction : e_3q^{A-1} (-50) + OH^{A0} (-160) -> H02^{A-1} (-225) + OH^{A-1} (-226) + H_2^{A0} (-227)s Reaction : e_3q^{A-1} (-50) + OH^{A0} (-160) -> OH^{A-1} (-225) + OH^{A-1} (-226) + H_2^{A0} (-227)s Reaction : e_3q^{A-1} (-50) + OH^{A0} (-160) -> OH^{A-1} (-225) + OH^{A-1} (-226) + H_2^{A0} (-227)s Reaction : e_3q^{A-1} (-177) + OH^{A0} (-160) -> OH^{A-1} (-225) + OH^{A-1} (-226) + H_2^{A0} (-227)s Reaction : e_3q^{A-1} (-50) + OH^{A0} (-160) $		
At time : 8.3472 n	s Reaction : OH^0 (-191) + OH^0 (-142) -> H2O2^0 (-234)	• • •	DetectorConstruction.cc
	s Reaction : OH^O (-132) + OH^O (-136) -> H2O2^O (-235) s Reaction : e_aq^-1 (-65) + e_aq^-1 (-73) -> OH^-1 (-236) + OH^-1 (-237) + H_2^O (-238)	88 <	C [*] DetectorConstruction ₹ ≣0
At time : 12.724 n	s Reaction : H_{202}^{200} (-215) + e_{aq}^{-1} (-82) -> 0H^-1 (-239) + 0H^0 (-240)	C* Detec	ectorConstruction) M DetectorConstruction::ConstructDetector()
	s Reaction : OH^0 (-212) + e_aq^-1 (-54) -> OH^-1 (-241)		G4VPhysicalVolume* DetectorConstruction::ConstructDetector()
	s Reaction : OH^0 (-240) + e_aq^-1 (-84) -> OH^-1 (-242) s Reaction : OH^-1 (-236) + H3O^1 (-147) -> No product	98	
	s Reaction : OH^0 (-114) + OH^0 (-118) -> H202^0 (-243)	99	G4Material *water = OtherMaterial("G4_WATER");
	s Reaction : e_aq^-1 (-43) + e_aq^-1 (-63) -> OH^-1 (-244) + OH^-1 (-245) + H_2^0 (-246)	100 101	// WORLD VOLUME = an G40RB FULL OF LIQUID WATER
	s Reaction : OH^0 (-197) + OH^0 (-194) -> H2O2^0 (-247)	101	// WORLD VOLUME - dii 040KD FULL UF LIQUID WATEK
	s Reaction : e_aq^-1 (-77) + H202^0 (-209) -> OH^-1 (-248) + OH^0 (-249) s Reaction : OH^-1 (-239) + H30^1 (-117) -> No product	103	<pre>double worldRadius = 0.1*micrometer;</pre>
	s Reaction : H30^1 (-198) + OH^-1 (-237) -> No product	104	
	s Reaction : e_aq^-1 (-45) + H202^0 (-247) -> 0H^-1 (-250) + 0H^0 (-251)	105	G4Orb* solidWorld = new G4Orb("World", worldRadius);
At time : 75.197 n	s Reaction : $0H^{-1}$ (-245) + H30^1 (-161) -> No product	106	C/Landas/Welversk landakkanld -
	s Reaction : H30^1 (-111) + OH^-1 (-242) -> No product	107	G4LogicalVolume* logicWorld =
	s Reaction : OH^O (-185) + OH^O (-140) -> H2O2^O (-252)	108	<pre>new G4LogicalVolume(solidWorld, //its solid water, //its material</pre>
*** G4Scheduler end	s at time : 200 ns	109	water, //its material
			1 character

Exercise 5: Run as it is the movie.mac macro

./chem3 -gui qt

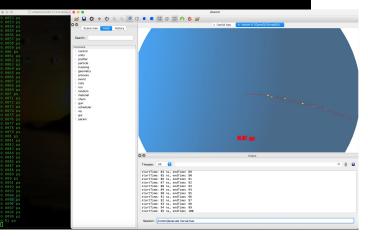

Exercise 6: Change the type of particle and re-run the movie.mac

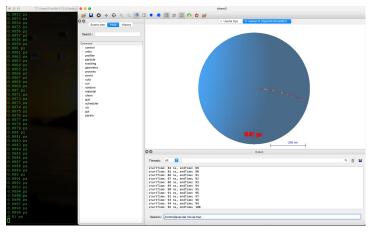

 ≓ ≣0 | ⊕

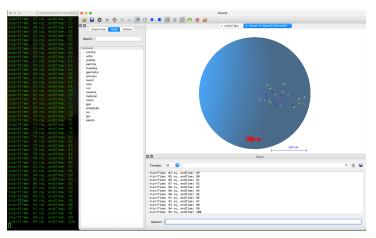

- 🗉 beam.in) No Selection
 - 1 #/tracking/verbose 1
 - 2 /gun/position 0 0 0 micrometer
 - 3 /gun/direction 0 0 1
 - 4 /gun/particle e+
 - 5 /gun/energy 1 keV
 - 6 #

 - 8 # NB: comment lines related to scheduler when the flag chemOFF is used
 - 9 #/scheduler/verbose 2
 - 10 #/scheduler/whyDoYouStop

 - 12
 - 13 /run/beamOn 1
 - 14

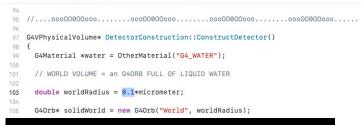


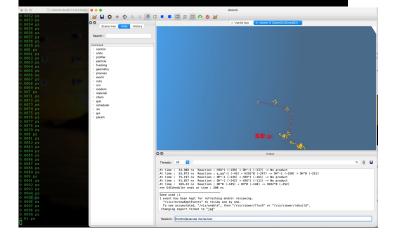


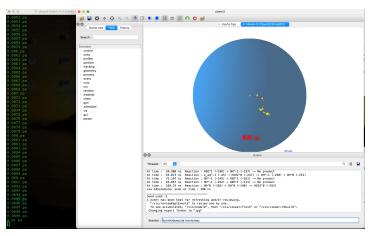


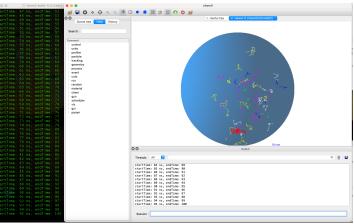
Exercise 7: Change the particle energy and re-run movie.mac

照く ₹ =0 | ⊕ F beam.in F beam.in) No Selection 1 #/tracking/verbose 1 2 /gun/position 0 0 0 micrometer 3 /gun/direction 0 0 1 4 /gun/particle e-5 /gun/energy 10 keV #_____ # NB: comment lines related to scheduler when the flag chemOFF is used #/scheduler/verbose 2 #/scheduler/whyDoYouStop /run/beamOn 1 14



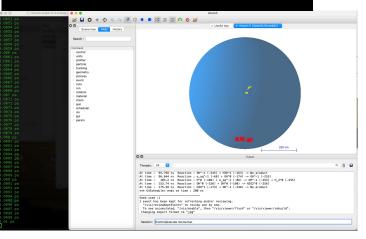

Exercise 8: Change the dimension of the sphere and re-run the movie.mac

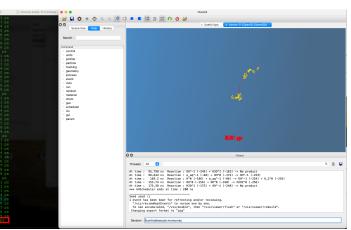

C* DetectorConstruction) M DetectorConstruction::ConstructDetector()

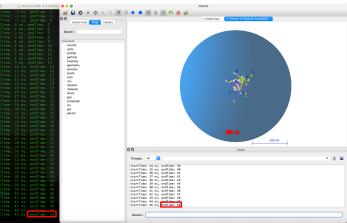


make

```
./chem3 -gui tcsh
Idle>/control/execute movie.mac
```



Exercise 9: Change the "endTime" of the chemistry movie




₹ =0 | 🕀

movie_chemistry.mac) No Selection

- /vis/modeling/trajectories/drawByParticleID-0/default/setDrawStepPts false
- 3 # end time of chemistry in ns (change units in chemistry.loop
- 4 /control/alias endTime 45
- 5 /vis/viewer/set/timeWindow/startTime 0 ps
- 6 #/vis/viewer/set/timeWindow/endTime 1 ps
- 8 /vis/viewer/set/timeWindow/fadeFactor 0
- 9 /vis/viewer/set/timeWindow/displayHeadTime true -0.1 -0.8 24 1.0 0.0 0.0
- 10 /control/alias timeWindow 5
- 11 /control/loop movie_chemistry.loop startTime -{timeWindow} {endTime} 1

Exercise 10: Change the EndTime of the chemistry execution

ActionInitialization.co C^{*} ActionInitialization

2 80 1 0€

i chem3-build-11.2.0.beta - chem3 -gui qt - 92×50 75 ActionInitialization::~ActionInitialization() 76 {} 🛯 🗶 🕼 🖉 🖉 🛑 × Useful tips viewer-0 (OpenGLStoredQt) 80 void ActionInitialization::BuildForMaster() const // In MT mode, to be clearer, the RunAction class for the master thread might 82 83 // be different than the one used for the workers. 84 // This RunAction will be called before and after starting the 85 // workers. // For more details, please refer to : // https://twiki.cern.ch/twiki/bin/view/Geant4/Geant4MTForApplicationDevelopers 88 // RunAction* runAction= new RunAction(); 89 // SetUserAction(runAction); 91 } 93 void ActionInitialization::Build() const 94 { PrimaryGeneratorAction* primGenAction = new PrimaryGeneratorAction; 95 96 SetUserAction(primGenAction); // Set ontional user action classes 99 SetUserAction(new RunAction()); SetUserAction(new TrackingAction()); SetUserAction(new SteppingAction()); SetUserAction(new StackingAction()); 200 nm 104 // chemistry part 105 if(G4DNAChemistryManager::IsActivated()){ G4Scheduler::Instance()->SetUserAction(new TimeStepAction()); Threads: All 0 9 m 🗳 108 // Uncomment and set to stop chemistry stage after: startime: 64 ns. engline: 63 109 // ... given number of time steps startTime: 85 ns, endTime: 90 startTime: 86 ns, endTime: 91 //G4Scheduler::Instance()->SetMaxNbSteps(1000); startTime: 87 ns. endTime: 92 startTime: 88 ns, endTime: 93 startTime: 89 ns, endTime: 94 // ... OR reaching this time G4Scheduler::Instance()->SetEndTime(50*nanosecond): startTime: 90 ns, endTime: 95 113 startTime: 91 ns, endTime: 96 startTime: 92 ns, endTime: 97 34.29 ns Reaction : e_aq^-1 (-85) + H30^1 (-144) -> H^0 (-265) 40.772 ns Reaction : e aq^-1 (-105) + OH^0 (-199) -> OH^-1 (-266) startTime: 93 ns, endTime: 98 2 characters startTime: 94 ns, endTime: 99 startTime: 95 ns, endTime: 100 Session

make

...

昭 (く)

C* ActionInitialization) M ActionInitialization::Build()

./chem3 -gui tcsh Idle>/control/execute movie.mac