
C++ refresh, CMake and Containers

XI International Geant4 School

14–19 Jan 2024

University of Pavia, Physics Department

Carlo Mancini Terracciano

carlo.mancini-terracciano@uniroma1.it

mailto:carlo.mancini-terracciano@uniroma1.it

Outline

• Some C++ features largely used in Geant4

• An example of CMake usage

• Containers and Docker

2

 Plan…

Some basic features of
C++

[slides made getting inspiration from 
 http://www.cplusplus.com]

3

Just an introduction

• This is not a C++ course

• Just few information useful to understand the Geant4
examples

• For a complete course:  
http://www.roma1.infn.it/people/rahatlou/index.php?
link=Didattica&sublink=ppp

4

http://www.roma1.infn.it/people/rahatlou/index.php?link=Didattica&sublink=ppp
http://www.roma1.infn.it/people/rahatlou/index.php?link=Didattica&sublink=ppp

Few things about C++

• A general-purpose programming language

• Has imperative, object-oriented and generic
programming features

• Provides facilities for low-level memory manipulation

• In 1983, "C with Classes" was renamed to "C++"  
(++ being the increment operator in C)

• Initially standardised in 1998  
(current standard is C++23 but the most used is C++17)

5

Classes

• Classes are an
expanded concept of
data structures: like
data structures, they
can contain data
members, but they
can also contain
functions as members

 
class Apple {

public:

 void setColor(color);

 color getColor();

private:

 color fColor;

 double fWeight;

};

6

Like Plato’s ideas (the idea
of apple), classes have generic

attributes (e.g. color).

Each instance (this Golden Delicious

apple) of the class have a specific
attribute (e.g. yellow)

Example of class usage

#include <iostream>

using std::cout;

class Rectangle {

 int width, height;

 public:

 void set_values (int,int);

 int area() {return width*height;}

};

void Rectangle::set_values (int x, int y)
{

 width = x;

 height = y;

}

int main () {

 Rectangle rect;

 rect.set_values (3,4);

 cout << "area: " << rect.area();

7

Idea of rectangle

An instance  
of rectangle

Example of class usage

#include <iostream>

using std::cout;

class Rectangle {

 int width, height;

 public:

 void set_values (int,int);

 int area() {return width*height;}

};

void Rectangle::set_values (int x, int y)
{

 width = x;

 height = y;

}

int main () {

 Rectangle rect;

 rect.set_values (3,4);

 cout << "area: " << rect.area();

8

Declaration

Usage of the 
methods

Implementation

Namespace

Example of class usage

#include <iostream>

using std::cout;

class Rectangle {

 int width, height;

 public:

 void set_values (int,int);

 int area() {return width*height;}

};

void Rectangle::set_values (int x, int y)
{

 width = x;

 height = y;

}

int main () {

 Rectangle rect;

 rect.set_values (3,4);

 cout << "area: " << rect.area();

9

Hyperuranion

(ὑπερουράνιος τόπος)

literally: "place beyond heaven”

“Real” world

What if I want to protect the rectangle
properties (the dimensions), once instantiated?

10

Constructors

#include <iostream>

using std::cout;

class Rectangle {

 int width, height;

 public:

 Rectangle(int x, int y);

 int area() {return width*height;}

};

Rectangle::Rectangle(int x, int y)  
{

 width = x;

 height = y;

}

int main () {

 Rectangle rect(3,4);

 cout << "area: " << rect.area();

 return 0;

11

Using the
constructor and

removing the
setting method

Constructors
#include <iostream>

using std::cout;

class Rectangle {

 int width, height;

 public:

 Rectangle(int x, int y);

 int area() {return width*height;}

};

Rectangle::Rectangle (int x, int y) :
width(x), height(y) { }

int main () {

 Rectangle rect(3,4);

 cout << "area: " << rect.area();

 return 0;

}

12

Better
implementation!

Inheritance

• Classes in C++ can be extended, creating new classes
which retain characteristics of the base class

• This process, known as inheritance, involves a base class
and a derived class

• The derived class inherits  
the members of the base class,  
on top of which it can  
add its own members

13

Inheritance, an example

class Polygon {

 protected:

 int width, height;

 public:

 void set_values (int a, int b)

 { width=a; height=b;}

 };

class Rectangle: public Polygon

{

 public:

 int area ()

 {

 return width*height;

 }

};

class Triangle: public Polygon

{

 public:

 int area()

 {

 return width*height/2;

 }

};

14

Protected and not private!

• The protected access specifier used in class Polygon is similar
to private. Its only difference occurs in fact with inheritance:

• When a class inherits another one, the members of the derived
class can access the protected members inherited from the
base class, but not its private member

• By declaring width and height as protected instead of private,
these members are also accessible from the derived classes
Rectangle and Triangle, instead of just from members of
Polygon

• If they were public, they could be accessed just from anywhere
15

Public, protected and private inheritance

• Public inheritance  
public members -> class public in the derived class, and
the protected members of the base class
remain protected in the derived class

• Protected inheritance makes
the public and protected members of the base
class protected in the derived class

• Private inheritance makes
the public and protected members of the base
class private in the derived class

16

Public inheritance?

Mother class

members access

specifiers

Daughter class
members access

specifiers

Public inheritance
Public Public

Protected Protected

Protected
inheritance

Public Protected

Protected Protected

Private inheritance
Public Private

Protected Private

17

Let’s use the classes…

#include <iostream>

using std::cout;

using std::endl;

int main () {

 Rectangle rect;

 Triangle trgl;

 rect.set_values (4,5);

 trgl.set_values (4,5);

 cout << rect.area() << endl;

 cout << trgl.area() << endl;

 return 0;

}

have a look at the example

https://github.com/carlomt/inheritance_example

for more details
18

https://github.com/carlomt/inheritance_example

CMake

• a cross-platform free and open-source software application for managing
the build process of software using a compiler-independent method

• supports directory hierarchies and multiple libraries

• can locate executables, files, and libraries

• https://cliutils.gitlab.io/modern-cmake/

• use a version of CMake that came out after your compiler

• since CMake will dumb itself down to the minimum required version in
your CMake file, installing a new CMake, even system wide, is pretty safe

19

https://cliutils.gitlab.io/modern-cmake/

Containers
20

Why?

• Imagine you develop an application in C++ with some
external dependency

• E.g.: the Geant4 example extended/medical/DICOM

• It uses DCMTK to load DICOM files

• And it needs that DCMTK has been compiled with the
flag CMAKE_POSITION_INDEPENDENT_CODE=ON

21

Virtualisation!

• If you create a virtual machine with Geant4 and DCMTK
compiled in the way needed by the DICOM example it
would work everywhere

• It’s heavy and slow!

• Containers overcome all  
the shortcomings of  
Virtual Machines

22

Virtualisation!

• Containers don’t require the installation of a separate
guest operating system.

• They directly run and use the host operating system

• Containers only need the dependent  
file system and binaries for their  
functioning

• lightweight than Virtual Machines

23

What is a container?

• Containers (such as Docker) are

• a standard for cloud computing and clusters

• a good way to run an application in the same environment
on different machines

• a fast way to distribute code for multiple architectures

• integrated in all the CI/CD platforms

• light and efficient

24

Run a Docker container

• docker pull hello-world

• docker run hello-world

• The image is pulled from https://hub.docker.com/

25

https://hub.docker.com/

Hello from Docker!

This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:

 1. The Docker client contacted the Docker daemon.

 2. The Docker daemon pulled the "hello-world" image from the Docker Hub.

 (arm64v8)

 3. The Docker daemon created a new container from that image which runs the

 executable that produces the output you are currently reading.

 4. The Docker daemon streamed that output to the Docker client, which sent it

 to your terminal.

To try something more ambitious, you can run an Ubuntu container with:

 $ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:

 https://hub.docker.com/

For more examples and ideas, visit:

 https://docs.docker.com/get-started/ 26

Develop a Docker container

• Write a “Dockerfile” file

• To build the image: 
docker build -t <tag> \ 
-f <dockerfile> <path>

• To run it: 
docker run <tag> <command> 

• Have a look of: 
https://github.com/carlomt/docker-dicom-g4example

FROM almalinux:9.3

RUN dnf install -y epel-release

RUN dnf --enablerepo=crb install -y \

 gcc \

 g++ \

 cmake \

 xerces-c xerces-c-devel \

 expat expat-devel \

 ninja-build && \

 dnf clean all

27

https://github.com/carlomt/docker-dicom-g4example

Volumes

• Containers are ephemeral, to have an output you have to
bind a volume

• -v (or —volume)

• <host path>:<container path>:<options>

28

GUI

• To forward X11

• Linux (xhost local:root) 
-e DISPLAY=$DISPLAY --volume /tmp/.X11-unix:/
tmp/.X11-unix

• Mac (once XQuartz is installed and xhost +localhost) 
-e DISPLAY=docker.for.mac.host.internal:0

• Windows (once XMing is installed)  
 -e DISPLAY=docker.host.internal:0

29

• Getting inspiration from the work done by A. Dotti and W. Takase

• I developed a Geant4 container for x86 and ARM

• https://hub.docker.com/r/carlomt/geant4 

https://github.com/carlomt/docker-geant4

• Once Docker is installed, you can run with: 
docker run carlomt/geant4:<G4-VERSION>

• To keep the size of the Docker images limited, datasets are not installed. It’s
possible to map a folder in the host with the option: 
—volume=“<GEANT4_DATASETS_PATH>:/opt/geant4/data:ro”

• The version carlomt/geant4:<G4-VERSION>-dcmtk includes the library to
read DICOM

• You can build a Docker container for your application on top of these images,  
example: https://github.com/carlomt/docker-dicom-g4example

Geant4 Docker container

https://hub.docker.com/r/carlomt/geant4
https://github.com/carlomt/docker-geant4
https://github.com/carlomt/docker-dicom-g4example

Docker Compose

• A tool for defining and running multi-container Docker
applications

• A YAML file to configure your application 
You can see it as a makefile for Docker

• Have a look of 
https://github.com/carlomt/docker-geant4course/blob/
main/docker-compose.yml

31

https://github.com/carlomt/docker-geant4course/blob/main/docker-compose.yml
https://github.com/carlomt/docker-geant4course/blob/main/docker-compose.yml

Security issue and Apptainer

• Depending on how the Docker demon is installed, you
could be root of the container (and if the host is Linux on
the volumes mounted)

• Apptainer (formerly Singularity)  
is a container system (compatible  
with Docker images) which doesn’t have this security issue

• https://apptainer.org/

• Largely available on scientific computing clusters 
eg: https://confluence.infn.it/display/TD/Singularity+in+batch+jobs

32

https://apptainer.org/
https://confluence.infn.it/display/TD/Singularity+in+batch+jobs

