Phenomenology of Weak Interactions on the Lattice

0.5

Vittorio Lubicz

4

-0.5

Roma, Accademia dei Lincei - December 4, 2023

Cabibbo's legacy

VOLUME 10, NUMBER 12

PHYSICAL REVIEW LETTERS

15 JUNE 1963

UNITARY SYMMETRY AND LEPTONIC DECAYS

Nicola Cabibbo CERN, Geneva, Switzerland (Received 29 April 1963)

We present here an analysis of leptonic decays based on the unitary symmetry for strong interactions, in the version known as "eightfold way,"¹ and the V-A theory for weak interactions.^{2,3} Our basic assumptions on J_{μ} , the weak current of strong interacting particles, are as follows: (1) J_{μ} transforms according to the eightfold representation of SU₃. This means that we neglect currents with $\Delta S = -\Delta Q$, or $\Delta I = 3/2$, which should belong to other representations. This limits the scope of the analysis, and we are not able to treat the complex of K^0 leptonic decays, or $\Sigma^+ \rightarrow n + e^+ + \nu$ in which $\Delta S = -\Delta Q$ currents play a role. For the other processes we make the hypothesis that the main contributions come from that part of J_{μ} which is in the eightfold representation.

(2) <u>The vector part of J_{μ} is in the same octet as</u> the electromagnetic current. The vector contribution can then be deduced from the electromagnetic properties of strong interacting particles. For $\Delta S = 0$, this assumption is equivalent to vector-

This is the paper we are celebrating today, which paved the way to FLAVOR PHYSICS

Cabibbo's legacy

but in this talk I want to start from another paper, which also paved a way

Nuclear Physics B244 (1984) 381-391 1984 © North-Holland Publishing Company WEAK INTERACTIONS ON THE LATTICE N. CABIBBO Dipartimento di Fisica, II Università di Roma "Tor Vergata", INFN, Sezione di Roma, Roma, Italy G. MARTINELLI INFN, Laboratori Nazionali di Frascati, Frascati, Italy R. PETRONZIO¹ CERN, Geneva, Switzerland Received 5 December 1983 (Revised 16 April 1984) We show that lattice QCD can be used to evaluate the matrix elements of four-fermion operators which are relevant for weak decays. A first comparison between the results obtained on the lattice and other determinations are also presented.

WEAK INTERACTIONS ON THE LATTICE

We show that lattice QCD can be used to evaluate the matrix elements of four-fermion operators which are relevant for weak decays. A first comparison between the results obtained on the lattice and other determinations are also presented.

Cabibbo's legacy

WEAK INTERACTIONS ON THE LATTICE

We show that lattice QCD can be used to evaluate the matrix elements of four-fermion operators which are relevant for weak decays. A first comparison between the results obtained on the lattice and other determinations are also presented.

Cabibbo's legacy

WEAK INTERACTIONS ON THE LATTICE

We show that lattice QCD can be used to evaluate the matrix elements of four-fermion operators which are relevant for weak decays. A first comparison between the results obtained on the lattice and other determinations are also presented.

In the same paper, a much more difficult problem is also addressed:

$$\begin{array}{c} K \rightarrow \pi \ \pi \ , \Delta I = 1/2, 3/2 \\ \hline \\ (a) \\ \hline \\ (a) \\ \hline \\ (a) \\ \hline \\ (b) \\ (b) \\ (c) \\ \hline \\ (c) \\ Not \ computed \\ The \ penguin \ operators \\ (b) \\ (c) \\ Not \ computed \\ The \ penguin \ operators \\ (a) \\ \hline \\ (a) \\ \hline \\ (b) \\ (c) \\ \hline \\ (c) \\ Not \ computed \\ The \ penguin \ operators \\ Q_5 \ and \ Q_6 \ couldn't \ be \\ really \ evaluated \\ It \ was \ too \ early... \\ \hline \\ (\pi^+|(\bar{s}\gamma^{\mu}_Ld)(\bar{u}\gamma^{\mu}_{\mu}u)|K^+\rangle = (16a^4)(-6.8 \pm 0.8)10^{-2} \ [-1.63 \times 10^{-2}], \\ (\pi^+|(\bar{s}t^A\gamma^{\mu}_Ld)(\bar{u}t^A\gamma^{\mu}_{\mu}u)|K^+\rangle = (16a^4)(-6.8 \pm 0.8)10^{-2} \ [-1.63 \times 10^{-2}], \end{array}$$

[Shifman, Veinshtein, Zakharov (1976)]

K → $\pi\pi$, $\Delta I = 1/2$ rule and ϵ'/ϵ

Performing the lattice study of $K \rightarrow \pi\pi$ decays required more than 30 years

K → $\pi\pi$, $\Delta I = 1/2$ rule and ϵ'/ϵ

Many difficult theoretical and technical problems had to be solved:

- Contribution of 10 operators (7 independent) to the effective ΔS=1 weak Hamiltonian and calculation of 48 Wick contractions
- Use of anti-p conditions to the problem
 Use non-per control the a subtraction of power uvergences (for non-precisely matched kinetics)
 L/2) boundary ite, solving
 L/2) boundary ite, solving
- Subtraction of finite volume corrections which, due to the presence of two pions in the final state, decrease as inverse powers of the volume
- Use of multi-state and multi-operator techniques to control unexpectedly large excited state contamination

K $\rightarrow \pi\pi$, $\Delta I = 1/2$ rule and ϵ'/ϵ

Many difficult theoretical and technical problems had to be solved:

 Contribution of 10 operators (7 independent) to the effective ΔS=1 weak Hamiltonian and calculation of 48 Wick contractions

+ very large statistics: 5000 MD trajectories, 1300 measurements

PHYS. REV. D 102, 054509 (2020)	R. ABBOTT et al.	PHYS. REV. D 102, 054509 (2020)	DIRECT CP VIOLATION AND THE
ibutions for each of the three types separately. The contributions are as follows:	$\mathcal{A}_{1}^{\text{type3}} = \frac{1}{2} D_{2}(M_{0,V-A}, M_{1,V+A}) - \frac{1}{2} D_{3}(M_{0,V-A}, M_{1,V+A}),$	$\mathcal{A}_{\mathcal{Y}}^{bpe3} = \frac{1}{4} D_2(M_{0,V-4}, M_{1,V+A}) - \frac{1}{2} D_3(M_{0,V-4}, M_{1,V+A})$	$A_{1}^{type4} = -\frac{1}{4}D_{5}(M_{0,V-A}, M_{1,V-A}) + \frac{1}{2}D_{1}$
$c^{1} = \frac{1}{2}D_{6}(M_{0,V-A}, M_{1,V+A}) - \frac{1}{2}D_{1}(M_{0,V-A}, M_{1,V+A}),$ (A6-)	(A7a)	$+\frac{1}{4}D_3(M_{0,V-A}, M_{0,V-A}) - \frac{1}{4}D_{14}(M_{0,V-A}, M_{0,V-A})$	$-\frac{1}{4}D_4(M_{0,V-A}, M_{0,V+A}) + \frac{1}{4}D$
$\begin{split} &(has)\\ &(has)\\ &^{+1}=\frac{1}{2}D_{11}(M_{(2)-4},M_{(1)+3})-\frac{1}{2}D_{1}(M_{(2)-4},M_{(1)+3})\\ &(has)\\ &^{+1}=\frac{1}{2}D_{1}(M_{(2)-4},M_{(1)+3})+\frac{1}{2}D_{1}(M_{(2)-4},M_{(1)-4})\\ &&=\frac{1}{2}D_{1}(M_{(2)-4},M_{(1)+3})-\frac{1}{2}D_{1}(M_{(2)-4},M_{(1)+3})\\ &(has)\\ &^{+1}=D_{1}(M_{(2)-4},M_{(1)+3})-\frac{1}{2}D_{2}(M_{(2)-4},M_{(1)+3})\\ &&=\frac{1}{2}D_{1}(M_{(2)-4},M_{(1)+3})-\frac{1}{2}D_{1}(M_{(2)-4},M_{(1)+3})\\ &&=\frac{1}{2}D_{1}(M_{(2)-4},M_{(1)+3})-\frac{1}{2}D_{1}(M_{(2)-4},M_{(1)+3})\\ &&=\frac{1}{2}D_{1}(M_{(2)-4},M_{(1)+3})-\frac{1}{2}D_{1}(M_{(2)-4},M_{(1)+3})\\ &&=\frac{1}{2}D_{1}(M_{(2)-4},M_{(1)+3})-\frac{1}{2}D_{1}(M_{(2)-4},M_{(1)+3})\\ &&=\frac{1}{2}D_{1}(M_{(2)-4},M_{(1)+3})-\frac{1}{2}D_{1}(M_{(2)-4},M_{(1)+3})\\ &&=\frac{1}{2}D_{1}(M_{(2)-4},M_{(1)+3})-\frac{1}{2}D_{1}(M_{(2)-4},M_{(1)+3})\\ &&=D_{1}(M_{10-4},M_{(1)+3})-\frac{1}{2}D_{1}(M_{2)-4},M_{(1)+3})\\ \end{split}$	$A_{1}^{(m)} = \frac{1}{2} D_{0}(M_{0,1-M}(y_{1,n}) - \frac{1}{2} D_{1}(M_{0,1-M}(y_{1,n})) - \frac{1}{2} D_{1}(M_{0,1-M}(y_{1,n}))$ (KB) $A_{1}^{(m)} = \frac{1}{2} D_{0}(M_{0,1-M}(y_{1,n}) - \frac{1}{2} D_{1}(M_{0,1-M}(y_{1,n})) - \frac{1}{2} D_{0}(M_{0,1-M}(y_{1,n})) + \frac{1}{2} D_{0}(M_{0,1-M}(y_{1,n})) - \frac{1}{2} D_{0}(M_{0,1-M}(y_{1,n})) - \frac{1}{2} D_{0}(M_{0,1-M}(y_{1,n})) - \frac{1}{2} D_{0}(M_{0,1-M}(y_{1,n})) - \frac{1}{2} D_{0}(M_{0,1-M}(y_{1,n})) + \frac{1}{2} D_{0}(M_{0,1-M}(y_{1,n})) + \frac{1}{2} D_{0}(M_{0,1-M}(y_{1,n})) + \frac{1}{2} D_{0}(M_{0,1-M}(y_{1,n})) - \frac{1}{2} D_{0}(M_{0,1-M}(y_{1,n}))$	$\begin{split} &+\frac{1}{2}\partial_{\mu}(M_{0,r-1}M_{0,r-1}) (A7)\\ &+\frac{1}{2}\partial_{\mu}(M_{0,r-1}M_{0,r-1}) +\frac{1}{2}D_{\mu}(M_{0,r-1}M_{1,r-1}) \\ &+\frac{1}{2}D_{\mu}(M_{0,r-1}M_{1,r-1}) -\frac{1}{2}D_{\mu}(M_{0,r-1}M_{1,r-1}) \\ &+\frac{1}{2}D_{\mu}(M_{0,r-1}M_{0,r-1}) +\frac{1}{2}D_{\mu}(M_{0,r-1}M_{1,r-1}) \\ &+\frac{1}{2}D_{\mu}(M_{0,r-1}M_{1,r-1}) +\frac{1}{2}D_{\mu}(M_{0,r-1}M_{1,r-1}) \\ &(A8)\\ &A_{\mu}^{apter} = -\frac{1}{2}D_{\mu}(M_{0,r-1}M_{1,r-1}) +\frac{1}{2}D_{\mu}(M_{0,r-1}M_{1,r-1}) \\ &(A8)\\ &A_{\mu}^{apter} = -\frac{1}{2}D_{\mu}(M_{0,r-1}M_{1,r-1}) +\frac{1}{2}D_{\mu}(M_{0,r-1}M_{1,r-1}) \\ &+\frac{1}{2}D_{\mu}(M_{0,r-1}M_{1,r-1}) +\frac{1}{2}D_{\mu}(M_{0,r-1}M_{1,r-1}) \\ &+\frac{1}{2}D_{\mu}(M_{0,r-1}M_{1,r-1}) +\frac{1}{2}D_{\mu}(M_{0,r-1}M_{1,r-1}) \\ &+\frac{1}{2}D_{\mu}(M_{0,r-1}M_{1,r-1}) +\frac{1}{2}D_{\mu}(M_{0,r-1}M_{1,r-1}) \\ \end{array}$	$\begin{split} &-\frac{1}{2}\partial_{21}(M_{31-J}M_{31-J}),\\ A_{1}^{\text{eres}} &= \frac{1}{4}\partial_{21}(M_{31-J}M_{31-J}) + \frac{1}{2}I\\ &-\frac{1}{2}\partial_{22}(M_{31-J}M_{31-J}) + \frac{1}{4}I\\ &-\frac{1}{4}\partial_{21}(M_{31-J}M_{31-J}) + \frac{1}{4}I\\ &-\frac{1}{4}\partial_{21}(M_{31-J}M_{31-J}) + \frac{1}{4}I\\ &-\frac{1}{4}\partial_{21}(M_{31-J}M_{31-J}) + \frac{1}{4}I\\ &-\frac{1}{4}\partial_{21}(M_{31-J}M_{31-J}) + \frac{1}{4}I\\ &-\frac{1}{4}\partial_{22}(M_{31-J}M_{31-J}) + \frac{1}{4}I\\ &-\frac{1}{4}\partial_{21}(M_{31-J}M_{31-J}) + \frac{1}{4}I\\ &-\frac{1}{4}\partial_{22}(M_{31-J}M_{31-J}) + \frac{1}{4}I\\ &-\frac{1}{4}\partial_{22}(M_{31-J}M_{31-J}M_{31-J}) + \frac{1}{4}I\\ &-\frac{1}{4}\partial_{22}(M_{31-J}M_{31-J}M_{31-J}) + \frac{1}{4}I\\ &-\frac{1}{4}\partial_{22}(M_{31-J}M_{31-J}M_{31-J}M_{31-J}) + \frac{1}{4}I\\ &-\frac{1}{4}\partial_{22}(M_{31-J}M_{31-J}M_{31-J}M_{31-J}M_{31-J}) + \frac{1}{4}I\\ &-\frac{1}{4}\partial_{22}(M_{31-J}M_{31$
$-\frac{1}{2}D_{19}(M_{0,V-A}, M_{0,V+A}), (A6f)$	$-\frac{1}{2}D_{16}(M_{0,V-A}, M_{0,V+A}), (A7e)$	$-\frac{1}{2}D_{13}(M_{0,V-A}, M_{0,V-A}) + \frac{1}{2}D_{15}(M_{0,V-A}, M_{0,V-A}).$ (A8c)	
$\begin{split} &= \frac{1}{2} \left(Q_{(M_{21-4},M_{22-4})} - \frac{1}{2} D_{(M_{22-4},M_{22-4})} - \frac{1}{2} D_{(M_{22-4},M_{22-4})} \right) \\ &+ \frac{1}{2} D_{(1,M_{22-4},M_{22-4})} - \frac{1}{2} D_{(2,M_{22-4},M_{22-4})} - \frac{1}{2} D_{(2,M_{22-$	$\begin{split} \mathcal{A}_{1}^{\text{core}} &= D_{0}[M_{12}, -M_{13}, -M_{13}] = \frac{2}{2}P_{1}^{1}M_{23}, -M_{13}, -M_{13} \\ &-\frac{1}{2}D_{2}(M_{12}, -M_{13}, +M_{13}) + \frac{1}{2}Q_{2}(M_{12}, -M_{13}, +M_{13}) \\ &+\frac{1}{2}D_{2}(M_{12}, -M_{13}, +M_{13}) - \frac{1}{2}D_{1}(M_{23}, -M_{13}, +M_{13}) \\ &+\frac{1}{2}D_{2}(M_{23}, -M_{13}, +M_{13}) - \frac{1}{2}D_{1}(M_{23}, -M_{13}, +M_{13}) \\ &+\frac{1}{2}D_{2}(M_{23}, -M_{13}, +M_{13}) - \frac{1}{2}D_{2}(M_{23}, -M_{13}, +M_{13}) \\ &+\frac{1}{2}D_{2}(M_{23}, -M_{13}, +M_{13}) - \frac{1}{2}D_{2}(M_{23}, -M_{13}, +M_{13}) \\ &+\frac{1}{2}D_{2}(M_{23}, -M_{23}, +M_{13}) - \frac{1}{2}D_{2}(M_{23}, -M_{13}, +M_{13}) \\ &+\frac{1}{2}D_{2}(M_{23}, -M_{23}, +M_{13}) - \frac{1}{2}D_{2}(M_{23}, -M_{13}, +M_{13}) \\ &+\frac{1}{2}D_{2}(M_{23}, -M_{23}, +M_{23}, +M_{13}) - \frac{1}{2}D_{2}(M_{23}, -M_{13}, +M_{13}) \\ &+\frac{1}{2}D_{2}(M_{23}, -M_{23}, +M_{23}, +M_{13}) - \frac{1}{2}D_{2}(M_{23}, -M_{13}, +M_{13}) \\ &+\frac{1}{2}D_{2}(M_{23}, -M_{23}, +M_{23}, +M_{13}) - \frac{1}{2}D_{2}(M_{23}, -M_{13}, +M_{13}) \\ &+\frac{1}{2}D_{2}(M_{23}, -M_{23}, +M_{23}, +M_{23}, +M_{13}) - \frac{1}{2}D_{2}(M_{23}, -M_{13}, +M_{13}, +M_{13}) \\ &+\frac{1}{2}D_{2}(M_{23}, -M_{23}, +M_{23}, +M_{23$	$\begin{split} A_{i}^{que} &= - D_{ii}(M_{0,i-1}, M_{0,i-1}) + \frac{1}{2} D_{ii}(M_{0,i-1}, M_{0,i-1}) \\ &+ \frac{1}{2} D_{ii}(M_{0,i-1}, M_{0,i-1}) + \frac{1}{2} D_{ii}(M_{0,i-1}, M_{0,i-1}) \\ &+ \frac{1}{2} D_{ii}(M_{0,i-1}, M_{0,i-1}) + \frac{1}{2} D_{ii}(M_{0,i-1}, M_{0,i-1}) \\ &+ \frac{1}{2} D_{ii}(M_{0,i-1}, M_{0,i-1}) + \frac{1}{2} D_{ii}(M_{0,i-1}, M_{0,i-1}) \\ &+ \frac{1}{2} D_{ii}(M_{0,i-1}, M_{0,i-1}) + \frac{1}{2} D_{ii}(M_{0,i-1}, M_{0,i-1}) \\ &+ \frac{1}{2} D_{ii}(M_{0,i-1}, M_{0,i-1}) + \frac{1}{2} D_{ii}(M_{0,i-1}, M_{0,i-1}) \\ &+ \frac{1}{2} D_{ii}(M_{0,i-1}, M_{0,i-1}) + \frac{1}{2} D_{ii}(M_{0,i-1}, M_{0,i-1}) \\ &+ \frac{1}{2} D_{ii}(M_{0,i-1}, M_{0,i-1}) + \frac{1}{2} D_{ii}(M_{0,i-1}, M_{0,i-1}) \\ &+ \frac{1}{2} D_{ii}(M_{0,i-1}, M_{0,i-1}) + \frac{1}{2} D_{ii}(M_{0,i-1}, M_{0,i-1}) \\ &+ \frac{1}{2} D_{ii}(M_{0,i-1}, M_{0,i-1}) + \frac{1}{2} D_{ii}(M_{0,i-1}, M_{0,i-1}) \\ &+ \frac{1}{2} D_{ii}(M_{0,i-1}, M_{0,i-1}) + \frac{1}{2} D_{ii}(M_{0,i-1}, M_{0,i-1}) \\ &+ \frac{1}{2} D_{ii}(M_{0,i-1}, M_{0,i-1}) + \frac{1}{2} D_{ii}(M_{0,i-1}, M_{0,i-1}) \\ &+ \frac{1}{2} D_{ii}(M_{0,i-1}, M_{0,i-1}) + \frac{1}{2} D_{ii}(M_{0,i-1}, M_{0,i-1}) \\ &+ \frac{1}{2} D_{ii}(M_{0,i-1}, M_{0,i-1}) + \frac{1}{2} D_{ii}(M_{0,i-1}, M_{0,i-1}) \\ &+ \frac{1}{2} D_{ii}(M_{0,i-1}, M_{0,i-1}) + \frac{1}{2} D_{ii}(M_{0,i-1}, M_{0,i-1}) \\ &+ \frac{1}{2} D_{ii}(M_{0,i-1}, M_{0,i-1}) + \frac{1}{2} D_{ii}(M_{0,i-1}, M_{0,i-1}) \\ &+ \frac{1}{2} D_{ii}(M_{0,i-1}, M_{0,i-1}) + \frac{1}{2} D_{ii}(M_{0,i-1}, M_{0,i-1}) \\ &+ \frac{1}{2} D_{ii}(M_{0,i-1}, $	
$+\frac{1}{4}D_{20}(M_{0,V-4}, M_{0,V-4}),$ (A6j) spe3 contributions are	$+\frac{1}{4}D_{23}(M_{0,V-A},M_{0,V+A}),$ (A7h)	$+\frac{1}{2}D_{22}(M_{0,V-A},M_{0,V+A}),$ (A8f)	

 $\Delta l = 1/2$ RULE

Max . Max .

MOV-1. MI V.

K → $\pi\pi$, $\Delta I = 1/2$ rule and ϵ'/ϵ

Many difficult theoretical and technical problems had to be solved:

- Contribution of 10 operators (7 independent) to the effective ΔS=1 weak Hamiltonian and calculation of 48 Wick contractions
- Use of anti-periodic (for ΔI=3/2) and sophisticated G-parity (for ΔI=1/2) boundary conditions to match the physical two-pion state with the ground state, solving the problem posed by the <u>Maiani-Testa theorem</u>

 $K \rightarrow \pi \pi$, $\Delta I = 1/2$ rule and ϵ'/ϵ

subtraction of power divergences (for non precisely matched kinematics)

		Z ^{RI←L}	Z ^{RI←LAT} (4.0 GeV)			
0.40845(42)	0	0	0	0	0	0
0	0.485(23)	-0.114(20)	-0.012(10)	0.0077(63)	0	0
0	-0.0908(93)	0.5248(89)	-0.0089(37)	0.0061(26)	0	0
0	-0.051(70)	-0.067(58)	0.432(30)	-0.003(19)	0	0
D	0.021(37)	0.025(35)	-0.073(15)	0.574(10)	0	0
0	0	0	0	0	0.47514(49)	-0.01786(21)
0	0	0	0	0	-0.04460(26)	0.55914(99)
0.42011(43)	0	0	0	0	0	0
)	0.422(38)	-0.207(36)	-0.005(13)	0.0084(77)	0	0
)	-0.094(24)	0.570(24)	-0.0120(83)	0.0059(47)	0	0
)	-0.14(14)	-0.15(12)	0.424(44)	0.013(26)	0	0
)	-0.030(63)	-0.073(66)	-0.106(23)	0.620(15)	0	0
	0	0	0	0	0.47715(49)	-0.02113(24)
)	0	0	0	0	-0.05960(55)	0.6030(14)

11

 Subtraction of <u>finite volume corrections</u> which, due to the presence of two pions in the final state, decrease as inverse powers of the volume

$$F^{2} = \frac{4\pi m_{K} E_{\pi\pi}^{2}}{k^{3}} \left(k \frac{d\delta_{0}}{dk} + q \frac{d\phi}{dq} \right) , \quad k^{2} = \left(\frac{E_{\pi\pi}}{2} \right)^{2} - m_{\pi}^{2} , \quad q = \frac{Lk}{2\pi} \quad F = 26.696(52)$$

 $K \rightarrow \pi \pi$, $\Delta I = 1/2$ rule and ε'/ε

Many difficult theoretical and technical problems had to be solved:

 Use of multi-state and multi-operator techniques to control unexpectedly large excited state contamination

K →
$$\pi\pi$$
, $\Delta I = 1/2$ rule and ϵ'/ϵ

K $\rightarrow \pi\pi$, $\Delta I = 1/2$ rule and ϵ'/ϵ

$K \rightarrow \pi \pi$, $\Delta I = 1/2$ rule and ε'/ε

A similar result observed in K-K, but not in D-D and B-B

[N. Carrasco, VL, L.Silvestrini, PLB 736, 2014]

$$K \rightarrow \pi \pi$$
, $\Delta I = 1/2$ rule and $\varepsilon' / \varepsilon$

The Standard Model parameters

A crucial task for Lattice QCD is to determine the Standard Model fundamental parameters in the quark sector

6 quark masses, 4 CKM parameters \implies 10 fundamental parameters

Quark masses

The accuracy is comparable with the experimental one

To achieve better than 1% final accuracy, however, an important issue must also be addressed

Isospin breaking effects

Isospin breaking effects

Isospin breaking effects

For present accuracy, only the leading order of the expansion is required

IB corrections to the hadronic spectrum

Two examples:

$$M_{\pi^+} - M_{\pi^0}$$

Only two QED diagrams at the leading order

$$M_{\pi^+} - M_{\pi^0} = 4.622(95) \text{ MeV}$$

 $M_{\pi^+} - M_{\pi^0} = 4.534(60) \text{ MeV}$

Frezzotti, Gagliardi, VL, Martinelli, Sanfilippo, Simula, PRD 106 (2022) 1

Feng, Jin, Riberdy, PRL 128 (2022) 052003

Expt: = 4.5936(5) MeV

IB corrections to the hadronic spectrum

Two examples:

$$M_{\pi^+} - M_{\pi^0}$$

Only two QED diagrams at the leading order

$$M_{\pi^+} - M_{\pi^0} = 4.622(95) \text{ MeV}$$

 $M_{\pi^+} - M_{\pi^0} = 4.534(60) \text{ MeV}$

Expt: = 4.5936(5) MeV

Frezzotti, Gagliardi, VL, Martinelli, Sanfilippo, Simula, PRD 106 (2022) 1

Feng, Jin, Riberdy, PRL 128 (2022) 052003

 $\begin{array}{c} m_{\rm u} - m_{\rm d} \\ m_{\rm u} - m_{\rm d} \\ \hline m_{\rm u} - m_{\rm d} \\ \hline m_{\rm u} - m_{\rm d} \\ \hline m_{\rm u} = 0.513(30) \\ \hline \overline{m}_{\rm u} = 2.50(17) \text{ MeV} \\ \hline \overline{m}_{\rm d} = 4.88(20) \text{ MeV} \\ \hline \end{array}$

with $0 \leq E_{\gamma} \leq \Delta E$. The sum is infrared finite [Bloch and Nordsieck, 1937]

RM123+Southampton (RM123S) Collab.

PHYSICAL REVIEW D 91, 074506 (2015)

QED corrections to hadronic processes in lattice QCD

N. Carrasco,¹ V. Lubicz,¹ G. Martinelli,² C. T. Sachrajda,³ N. Tantalo,^{4,5} C. Tarantino,¹ and M. Testa⁶

PHYSICAL REVIEW D **95**, 034504 (2017)

Finite-volume QED corrections to decay amplitudes in lattice QCD

V. Lubicz,¹ G. Martinelli,^{2,3} C. T. Sachrajda,⁴ F. Sanfilippo,⁴ S. Simula,⁵ and N. Tantalo⁶

PHYSICAL REVIEW LETTERS 120, 072001 (2018)

First Lattice Calculation of the QED Corrections to Leptonic Decay Rates

D. Giusti, V. Lubicz, G. Martinelli, C. T. Sachrajda, F. Sanfilippo, S. Simula, N. Tantalo, C. Tarantino

PHYSICAL REVIEW D 100, 034514 (2019)

Editors' Suggestion

Light-meson leptonic decay rates in lattice QCD+QED

100

M. Di Carlo, D. Giusti, V. Lubicz, G. Martinelli, C. T. Sachrajda, F. Sanfilippo, S. Simula, N. Tantalo₃₁

RM123+Southampton (RM123S) Collab.

PHYSICAL REVIEW D 103, 014502 (2021)

First lattice calculation of radiative leptonic decay rates of pseudoscalar mesons

A. Desiderio[®],¹ R. Frezzotti[®],¹ M. Garofalo[®],² D. Giusti[®],^{3,4} M. Hansen[®],⁵ V. Lubicz[®],² G. Martinelli[®],⁶ C. T. Sachrajda,⁷ F. Sanfilippo,⁴ S. Simula[®],⁴ and N. Tantalo¹

PHYSICAL REVIEW D 103, 053005 (2021)

Comparison of lattice QCD + QED predictions for radiative leptonic decays of light mesons with experimental data

R. Frezzotti[®],¹ M. Garofalo[®],^{2,3} V. Lubicz[®],² G. Martinelli,⁴ C. T. Sachrajda,⁵ F. Sanfilippo,⁶ S. Simula[®],⁶ and N. Tantalo¹

RBC-UKQCD 2023 E Published for SISSA by 2 Springer Collaboration Ю Isospin-breaking corrections to light-meson leptonic decays from lattice simulations at physical guark N masses N \mathbb{N} W Peter Boyle,^{*a,b*} Matteo Di Carlo,^{*b*} Felix Erben,^{*b*} Vera Gülpers,^{*b*} Maxwell T. Hansen,^{*b*} \mathbb{N} Tim Harris,^b Nils Hermansson-Truedsson,^{c,d} Raoul Hodgson,^b Andreas Jüttner,^{e,f} P Fionn Ó hÓgáin,^b Antonin Portelli,^b James Richings^{b,e,g} and Andrew Zhen Ning Yong^b N

22

$$\frac{\Gamma(K \to \ell \nu_{\ell}(\gamma))}{\Gamma(\pi \to \ell \nu_{\ell}(\gamma))} \propto \left(\frac{|V_{us}|f_{l}}{|V_{ud}|f_{l}}\right)$$

RM123S Collaboration M. Di Carlo et al., PRD 100, 2019

 $\delta R_{K\pi} = -0.0086(41)$

V. Cirgliano, H. Neufeld PLB 700, 2011

RBC-UKQCD Collaboration

P. Boyle et al., JHEP 02, 2023

$$\delta R_{K\pi} = \delta R_K - \delta R_\pi$$

with ChPT, with

 $-\delta R_{K\pi}$

Lattice results in ChPT Lattice **GOOD AGREEMENT** $\delta R_{\pi} = 0.0153(19)$ 0.0176(21)smaller uncertainties $\delta R_{K} = 0.0024(10)$ 0.0064(24)-0.0112(21) $\delta R_{K\pi} = -0.0126(14)$

For heavy mesons only the lattice approach is available

QCD+QED on the lattice

Inclusive hadronic τ decay on the lattice

The hadronic inclusive decay rate of the τ -lepton can be written as

$$R_{ud}^{(\tau)} = \frac{\Gamma(\tau \to X_{ud} \nu_{\tau})}{\Gamma(\tau \to e \,\bar{\nu}_e \,\nu_{\tau})} = 6\pi \, S_{EW} \, |V_{ud}|^2 \int_0^1 ds \, (1-s)^2 \left[(1+2s) \,\rho_T(s) + \rho_L(s) \right]$$

where $\rho_T(s)$ and $\rho_L(s)$ are the form factors of the spectral density

$$\rho_{ud}^{\alpha\beta}(q) = \sum_{X} \langle 0 | J_{ud}^{\alpha}(0) | X_{ud}(q) \rangle \langle X_{ud}(q) | J_{ud}^{\beta}(0)^{\dagger} | 0 \rangle$$
$$= \langle 0 | J_{ud}^{\alpha}(0) (2\pi)^{4} \delta^{4}(\mathbb{P} - q) J_{ud}^{\beta}(0)^{\dagger} | 0 \rangle$$

It is related to the Euclidean lattice correlator by:

$$C_{\rm I}(t) \equiv \int_0^\infty \frac{dE}{2\pi} e^{-Et} E^2 \rho_{\rm I}(E^2)$$

The inverse problem can be solved with the HLT method

[Hansen, Lupo, Tantalo, PRD 99 2019]

Inclusive hadronic τ decay on the lattice

The R-ratio on the lattice

LETTERE AL NUOVO CIMENTO

VOL. IV. N. 1

Hadron Production in e^+e^- Collisions (*).

N. CABIBBO

Istituto di Fisica dell'Università - Roma Istituto Nazionale di Fisica Nucleare - Sezione di Roma

> G. PARISI and M. TESTA Istituto di Fisica dell'Università - Roma

> > (ricevuto il 30 Maggio 1970)

1. – The simple properties of deep inelastic electron-proton scattering has suggested models where these processes arise as interactions of virtual photons with an «elementary » component of the proton. These as yet unspecified elementary components of the proton have been given the name of «partons » by FEYNMAN (¹). The model has been studied by BJORKEN and PASCHOS (²) and successively by DRELL, LEVY and TUNG MOW YAN (³) who gave a field-theoretical treatment of the parton model, and were able to recover some of the experimentally observed properties of this process. In this letter we wish to extend the method of ref. (³) to the study of the total cross-section of electron-positron annihilation into hadrons.

This treatment leads to an asymptotic (very high cross-section c.m. energy, 2E) of the form

(1)
$$\sigma \rightarrow \frac{\pi \alpha^2}{12E^2} \left[\sum_{\text{spin } 0} (Q_i)^2 + 4 \sum_{\text{spin } \frac{1}{2}} (Q_i)^2 \right],$$

where Q_i is the charge of the *i*-th parton in units of *e*. This is simply the sum of the contributions of the single partons considered as pointlike ⁽⁴⁾. Each parton contributes a different kind of events to the total cross-section. The typical high-energy event should consist in the production of a pair of virtual partons, each of which develops into a jet of physical hadrons.

PHYSICAL REVIEW LETTERS 130, 241901 (2023)

Probing the Energy-Smeared R Ratio Using Lattice QCD

Constantia Alexandrou,^{1,2} Simone Bacchio,² Alessandro De Santis,³ Petros Dimopoulos,⁴ Jacob Finkenrath,² Roberto Frezzotti,³ Giuseppe Gagliardi,⁵ Marco Garofalo,⁶ Kyriakos Hadjiyiannakou,^{1,2} Bartosz Kostrzewa,⁷ Karl Jansen,⁸ Vittorio Lubicz,⁹ Marcus Petschlies,⁶ Francesco Sanfilippo,⁵ Silvano Simula,⁵ Nazario Tantalo^{,3*} Carsten Urbach,⁶ and Urs Wenger¹⁰

(Extended Twisted Mass Collaboration (ETMC))

Using the same HLT method to solve the inverse problem

$$V(t) = \frac{1}{12\pi^2} \int_0^\infty d\omega \omega^2 R(\omega) e^{-t\omega}.$$

The muon anomalous magnetic moment

Cabibbo 60

- A lot of progress has been done since the first paper of weak interactions on the lattice
- I have tried to summarize some of the most recent and interesting results

 $\Delta I = 1/2$ rule

and ε'/ε

Inclusive

 τ decays

Nuclear Physics B244 (1984) 381-391 © North-Holland Publishing Company

WEAK INTERACTIONS ON THE LATTICE

N. CABIBBO

Dipartimento di Fisica, II Università di Roma "Tor Vergata", INFN, Sezione di Roma, Roma, Italy

G. MARTINELLI

INFN, Laboratori Nazionali di Frascati, Frascati, Italy

R. PETRONZIO¹

CERN, Geneva, Switzerland

Received 5 December 1983 (Revised 16 April 1984)

We show that lattice QCD can be used to evaluate the matrix elements of four-fermion operators which are relevant for weak decays. A first comparison between the results obtained on the lattice and other determinations are also presented.

Isospin breaking effects

The muon g-2

Radiative decays

• For most of these quantities, lattice predictions have the accuracy of precision physics

The Cabibbo

angle

Cabibbo 60

Grazie Nicola!

Cabibbo 60

BACKUP SLIDES

The precision era of Lattice QCD

Quark masses

$$m^{\overline{MS}}(\mu) = \left(\frac{\alpha_s(\mu)}{\alpha_s(\pi/a)}\right)^{\gamma \to \rho_0} \left[1 + \frac{\alpha_s(\mu) - \alpha_s(\pi/a)}{4\pi} \left(\frac{\gamma^{(1)}}{2\beta_0} - \frac{\gamma^{(0)}\beta_1}{2\beta_0^2}\right) + \frac{\alpha_s(\pi/a)}{4\pi} K_m\right] m(a)$$

The renormalized The bare quark mass

quark mass

fixed from the hadronic spectrum

In the last 30 years, many lattice calculations have been performed. NPR methods have proven to be an essential ingredient for high accuracy

Inclusive τ decay on the lattice

Hansen, Lupo, Tantalo, PRD 99 2019

$$R_{ud}^{(\tau,\mathrm{I})}(\sigma) \propto \int_{m_h}^{\infty} \frac{dE E^2}{m_\tau^3} K_{\mathrm{I}}^{\sigma} \left(\frac{E}{m_\tau}\right) \rho_{\mathrm{I}}(E^2)$$

THE HLT METHOD

$$C_{\rm I}(t) \equiv \int_0^\infty \frac{dE}{2\pi} e^{-Et} E^2 \rho_{\rm I}(E^2)$$

$$K_{I}^{\sigma}(x) = f(x) \Theta_{\sigma}(x)$$
, where $\Theta_{\sigma}(x) \equiv \frac{1}{1 + e^{-x/\sigma}}$, $\lim_{\sigma \mapsto 0} \Theta_{\sigma}(x) = \theta(x)$

 One looks for an approximation of the kernel in terms of a basis function

$$K_{\rm I}^{\sigma}\left(\frac{E}{m_{\tau}}\right) \simeq \sum_{n=1}^{n_{max}} g_{\rm I}(n,\sigma,am_{\tau}) e^{-aEn}$$

• The coefficients are obtained by minimizing: $W_{\rm I}^{\alpha}[g] \equiv \frac{A_{\rm I}^{\alpha}[g]}{A_{\tau}^{\alpha}[0]} + \lambda B_{\rm I}[g]$ where

$$A_{\rm I}^{\alpha}[\boldsymbol{g}] = \int_{E_{min}}^{E_{max}} dE \, e^{aE\alpha} \left| \sum_{n=1}^{T/(2a)} g(n) e^{-aEn} - K_{\rm I}^{\sigma} \left(\frac{E}{m_{\tau}} \right) \right|^2 \quad , \quad B_{\rm I}[\boldsymbol{g}] = B_{\rm norm} \sum_{n_1, n_2=1}^{T/(2a)} g(n_1) \, g(n_2) \, \operatorname{Cov}_{\rm I}(an_1, an_2)$$

• Then: $R_{ud}^{(\tau,\mathrm{I})}(\sigma) \propto \sum_{n=1}^{T/(2a)} g_{\mathrm{I}}(n,\sigma,am_{\tau}) C_{\mathrm{I}}(na)$

Inclusive τ decay on the lattice

Branching fraction	HFLAV 2021 fit (%)
$K^- \nu_{\tau}$	0.6957 ± 0.0096
$K^-\pi^0 u_ au$	0.4322 ± 0.0148
$K^- 2\pi^{0} u_{ au}$ (ex. K^{0})	0.0634 ± 0.0219
$K^- 3\pi^0 u_{ au}$ (ex. K^0 , η)	0.0465 ± 0.0213
$\pi^-\overline{K}^0\nu_{ au}$	0.8375 ± 0.0139
$\pi^-\overline{K}^0\pi^0 u_ au$	0.3810 ± 0.0129
$\pi^-\overline{K}^{0}2\pi^{0} u_{ au}$ (ex. K^{0})	0.0234 ± 0.0231
$\overline{K}^{0}h^{-}h^{-}h^{+} u_{ au}$	0.0222 ± 0.0202
$K^-\eta u_{ au}$	0.0155 ± 0.0008
$K^{-}\pi^{0}\eta\nu_{\tau}$	0.0048 ± 0.0012
$\pi^-\overline{K}^{0}\eta u_{ au}$	0.0094 ± 0.0015
$K^- \omega u_{ au}$	0.0410 ± 0.0092
$K^-\phi(K^+K^-) u_ au$	0.0022 ± 0.0008
$K^-\phi(K^{0}_{\mathcal{S}}K^{0}_{L}) u_{ au}$	0.0015 ± 0.0006
$\mathcal{K}^{-}\pi^{-}\pi^{+} u_{ au}$ (ex. \mathcal{K}^{0} , ω)	0.2924 ± 0.0068
$K^{-}\pi^{-}\pi^{+}\pi^{0}\nu_{\tau}$ (ex. K^{0} , ω , η)	0.0387 ± 0.0142
$K^{-}2\pi^{-}2\pi^{+}\nu_{\tau}$ (ex. K^{0})	0.0001 ± 0.0001
$K^{-}2\pi^{-}2\pi^{+}\pi^{0}\nu_{\tau}$ (ex. K^{0})	0.0001 ± 0.0001

HFLAV compilations

