

FCCee MDI & IR Mockup Workshop

First Assessments of Luminosity-related signals at FCC-ee

Vaibhavi Gawas CERN and University of Geneva

- Luminosity Determination
- Work Plan / Constraints
- Beamstrahlung
- GUINEA-PIG
- Preliminary plots

- Luminosity Determination:
 - 1. Measuring rate of low angle Bhabha interactions ($e+e- \rightarrow e+e-$) LEP --Radiative Bhabha scattering for relative luminosity measurements
 - 2. Detecting photons from radiative bhabha scattering (e+e- \rightarrow e+e- gamma) SuperKEKB
 - 3. Cherenkov detector to monitor beamstrahlung flux SLC
 - 4. The Van Der Meer method (using vertical beam steering) ISR, LHC

Luminosity	Z	W	ZH	tŦ
$10^{34} \text{cm}^{-2} \text{s}^{-1}$	140	20	5.0	1.25

- Targeted accuracy for FCCee: 0.01% or 10e-4 for absolute luminosity
- Acceptance limit: um precision in the LumiCal for small-angle Bhabhas (due to steep angular dependence of the Bhabha scattering)

Luminosity Determination in FCC-ee

- Luminosity Determination: Rate of low angle Bhabha interactions ($e+e- \rightarrow e+e-$)
 - □ Has well understood, calculable and large cross section
 - □ Sufficient Statistical Precision,
 - □ Separation from background radiation
- The photons detected by luminometer are plagued by background radiations: Beamstrahlung, pair-production, radiative Bhabha, Additionally: SR, Solenoid

Beam-Beam backgrounds

The radiation processes and their impact on luminosity can be measured for luminosity optimization during the collision

Affects the effective

Work Plan and Constraints

- Luminometer and tuning knobs: Implied alignment or Beam stability tolerance
- Beamstrahlung monitor signals: Dependence
- on IP position, closed-orbit angle, beam sizes
 - If possible: information from silicon vertex detector signals

Combine this information for Luminosity tuning and optimization

Luminometer and Beamstrahlung Monitor

- Bhabha scattering: provides low instantaneous counting rate
- Very high power from beamstrahlung photons
- Handling the backgrounds resulting from beamstrahlung photon (could affect detector/ SVD): incoherent e+e- pair production
- Distinguishing and shielding beamstrahlung photons from synchrotron and low energy radiative-Bhabha photons

Beamstrahlung

Classical Description of Beamstrahlung

Beamstrahlung parameter: $\Upsilon = \frac{2}{3} \frac{\hbar \omega_c}{E_o}$ $\hbar \omega_c = \frac{3}{2} \frac{\hbar c \gamma^3}{\rho}$ For FCCee, $\Upsilon << 1$: Classical regime

$$\langle \Upsilon \rangle = \frac{5}{6} \frac{r_e^2 \gamma N_e}{\alpha \sigma_z (\sigma_x^* + \sigma_y^*)}$$

- Affects the bunch length and energy spreadand hence the beam lifetime + luminosity
- Photon number and emitted energy proportional to beamstrahlung parameter

Measurements based on the Beamstrahlung Monitor

- <u>Transverse sizes of e+ and e- beam</u>: Analysis of beamstrahlung energy patterns
- <u>IP beam-beam steering</u>: Angular shift in in centre of beamstrahlung distribution (in gamma region- at small angles)
- <u>Luminosity, beam size variation:</u>
 Visible (light) beamstrahlung at fixed angle.
 Radiation intensity depends on-

$$\frac{N_2L}{\theta^3}e^{\frac{-\sigma_s^2\theta^4\omega^2}{16c^2}}$$

Generator of Unwanted Interactions for Numerical Experiment Analysis: Program Interfaced to GEANT

- Implements full beam dynamics for particle generation, generates radiative Bhabha and Beamstrahlung, interaction effects on luminosity and background
- Both classical and quantum description of beamstrahlung can be used
- Simulation code also includes pinch effect, pair creation, hadronic background calculations

- Accepts input files of electron and positron beams with crab-waist transform
- And all essential accelerator parameters

Preliminary results

Beamstrahlung flux at four working points of FCCee

45.6 GeV, 80.0 GeV, 120.0 GeV, 182.5 GeV

10³

 Waist shift: increases IP spot size
 Cause: horizontal sextupole or upstream quadrupole displacement, change in quadrupole strength

*

$$\neg \quad y^* \to y^* + \mathsf{I} y$$

Working point: ttbar, 182.5 GeV

BS photons distributions

Preliminary results: Vertical waist shifts

Working point: Z, 45.6 GeV

BS photons distributions

References

- Study of Electromagnetic and Hadronic Background in the Interaction Region of the TESLA Collider <u>https://cds.cern.ch/record/331845?In=en</u>
- Characterization of the beamstrahlung radiation at the future high-energy circular collider <u>https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.26.111002</u>
- Beam Spot Size Measurement Using Beamstrahlung Signals at the SLC Interaction Point
 <u>https://accelconf.web.cern.ch/p91/PDF/PAC1991_1207.PDF</u>
- Beam-beam deflection as a beam tuning tool at the SLAC linear collider
 <u>https://www.sciencedirect.com/science/article/pii/0168900290902031</u>
- Real-time luminosity monitor for a B-factory experiment
 <u>https://www.sciencedirect.com/science/article/pii/S016890020000766X?via%3Dihub</u>
- Beamstrahlung Monitor for SLC Final Focus Using Gamma Ray Energies
 <u>https://inspirehep.net/literature/230105</u>
- Beamstrahlung Monitor for SLC Final Focus Using Visible Wavelengths
 <u>https://inspirehep.net/literature/230103</u>
- Luminosity optimization feedback in the SLC <u>https://inspirehep.net/literature/496269</u>
- Luminosity Measurements And Calculations <u>Https://Cds.Cern.Ch/Record/261063/</u>
- Beam-Beam Simulations With Guinea-Pig http://cds.cern.ch/record/2828391?ln=en
- Lep Luminosity Revisited: Design And Reality <u>https://accelconf.web.cern.ch/a01/PDF/WEAU01.pdf</u>
- Beam Blow Up due to Beamstrahlung in Circular \$e^+e^-\$ Colliders
 <u>https://cds.cern.ch/record/261063/files</u>
- Challenges for FCC-ee Luminosity Monitor Design https://arxiv.org/abs/2107.12837
- Lecture Notes for: Accelerator Physics and Technologies for Linear Colliders
 <u>https://hep.uchicago.edu/~kwangje/LectureNotes_Zimmermann.pdf</u>

Acknowledgements

- Frank Zimmermann
- Jack Salvesen
- Kevin Andre
- Manuela Boscolo

Thank you all!

BACKUP SLIDES

Summary slide

- Luminometer and tuning knobs: Implied alignment
 or Beam stability tolerance
- Beamstrahlung monitor signals: Dependence
- on IP position, closed-orbit angle, beam sizes
 - If possible: information from silicon vertex detector signals

The overall recipe for luminosity tuning

Combine this information for Luminosity tuning and optimization

Starting with Beamstrahlung signals

Simulations

- Guinea Pig: Generate effects of waist shifts, vertical dispersions etc on BS spectrum, power output, and luminosity at four different working points
- Additional beam-generation code to set-up switches unavailable in GP.

Measurements possible from Beamstrahlung

- <u>Transverse sizes of e+ and e- beam:</u> Analysis of beamstrahlung energy patterns
- <u>Luminosity, beam size variation:</u> Visible(light) beamstrahlung at fixed angle
- <u>IP beam-beam steering:</u> Angular shift in in centre of beamstrahlung distribution (in gamma region)

Luminosity Tuning

Bremsstrahlung

• Event rates proportional to luminosity

• Detection of hard photons or remnant beam particles

- Detected photon accompanied by number of soft photons
- Need to avoid detecting beamstrahlung related or pair-production related low energy particles.

Beamstrahlung

- Affects the bunch length and energy spread- and hence the beam lifetime and luminosity
- Photon number and emitted energy proportional to beamstrahlung parameter: simplifies power estimation

Pair-Production

- Coherent and incoherent (small epsilon) production
- Breit-Wheeler, Bethe-Heitler and Landau-Lifshitz

- Intense/powerful productionupto ~100 kilowatts
- Needs shielding from radiative Bhabha (emitted in same radiation cone)

Parameters

FCC-ee collider parameters as of June 3, 2023.								
Beam energy	[GeV]	45.6	80	120	182.5			
Layout		PA31-3.0						
# of IPs		4						
Circumference	[km]	90.658816						
Bend. radius of arc dipole	[km]	9.936						
Energy loss / turn	[GeV]	0.0394	0.374	1.89	10.42			
SR power / beam	[MW]	50						
Beam current	[mA]	1270 137 26.7		4.9				
Colliding bunches / beam		15880	1780	440	60			
Colliding bunch population	$[10^{11}]$	1.51	1.45	1.15	1.55			
Hor. emittance at collision ε_x	[nm]	0.71	2.17	0.71	1.59			
Ver. emittance at collision ε_y	[pm]	1.4	2.2	1.4	1.6			
Lattice ver. emittance $\varepsilon_{y,\text{lattice}}$	[pm]	0.75	1.25	0.85	0.9			
Arc cell		Long 90/90 90/90						
Momentum compaction α_p	$[10^{-6}]$	28.6		7.4				
Arc sext families		75		146				
$\beta^*_{x/y}$	[mm]	110 / 0.7	220 / 1	240 / 1	1000 / 1.6			
Transverse tunes $Q_{x/y}$		218.158 / 222.200	218.186 / 222.220	398.192 / 398.358	398.148 / 398.183			
Chromaticities $Q'_{x/y}$		0 / +5	0 / +2	0 / 0	0 / 0			
Energy spread (SR/BS) σ_{δ}	[%]	0.039 / 0.089	0.070 / 0.109	0.104 / 0.143	0.160 / 0.192			
Bunch length (SR/BS) σ_z	[mm]	5.60 / 12.7	3.47 / 5.41	3.40 / 4.70	1.81 / 2.17			
RF voltage 400/800 MHz	[GV]	0.079 / 0	1.00 / 0	2.08 / 0	2.1 / 9.38			
Harm. number for 400 MHz		121200						
RF frequency (400 MHz)	MHz	400.786684						
Synchrotron tune Q_s		0.0288	0.081	0.032	0.091			
Long. damping time	[turns]	1158	219	64	18.3			
RF acceptance	[%]	1.05	1.15	1.8	2.9			
Energy acceptance (DA)	[%]	± 1.0	± 1.0	± 1.6	-2.8/+2.5			
Beam crossing angle at IP $\pm \theta_x$	[mrad]	± 15						
Piwinski angle $(\theta_x \sigma_{z,BS}) / \sigma_x^*$		21.7	3.7	5.4	0.82			
Crab waist ratio	[%]	70	55	50	40			
Beam-beam $\xi_x/\xi_y{}^a$		$0.0023 \ / \ 0.096$	$0.013 \ / \ 0.128$	0.010 / 0.088	$0.073 \ / \ 0.134$			
Lifetime $(q + BS + lattice)$	[sec]	15000	4000	6000	6000			
Lifetime $(lum)^b$	[sec]	1340	970	840	730			
Luminosity / IP	$[10^{34}/{\rm cm^2 s}]$	140	20	5.0	1.25			
Luminosity / IP (CDR, 2 IP)	$[10^{34}/cm^{2}s]$	230	28	8.5	1.8			

^aincl. hourglass.

^bonly the energy acceptance is taken into account for the cross section