

FCC-ee Luminosity Measurement and LumiCal

FCC-ee MDI & IR Mockup Workshop Nov 16 – 17, 2023 Laboratori Nazionali di Frascati

Mogens Dam Niels Bohr Institute, Copenhagen

Luminosity Measurement with Small-angle Bhabha Scattering

• Bhabha scattering = Elastic scattering $e^+e^- \rightarrow e^+e^-$

Dominated by t-channel photon exchange

Very strongly forward peaked

Measured with set of two calorimeters; one at each side of the IP

Crossing beams: Center monitors around outgoing beam lines

Image: Minimize dependence on beam parameters and misalignment:

- * *Restricted acceptance*: Average over two counting rates: Rate = ½ × (SideA + SideB)
- Important systematics from acceptance definition: In particular minimum scattering angle

$$rac{\delta \sigma^{
m acc}}{\sigma^{
m acc}} \simeq rac{2 \delta heta_{
m min}}{ heta_{
m min}} = 2 \left(rac{\delta R_{
m min}}{R_{
m min}} \oplus rac{\delta z}{z}
ight)$$

Normalisation to 10⁻⁴

- ◆ The goal at FCC-ee is an absolute normalization to 10⁻⁴
- After much effort, the precision on the absolute luminosity at LEP was eventually dominated by theory

□ Example **OPAL** - most precise measurement at LEP:

Theory: **5.4** × **10**⁻⁴ Experiment: **3.4** × **10**⁻⁴

arXiv:9910066

arXiv:1912.02067

arXiv:1902.05912

Theory precision

□ Since LEP, theory precision has improved to **3.7** × **10**⁻⁴

□ And a path is outlined to reach **10**⁻⁴

Instrumental precision – major effort to go to sub-permille level

OPAL SiW LumiCal

Achieved lumi uncertainty

Quantity	Relative	Relative
	statistical error	Systematic error
	$(\times 10^{-4})$	$(\times 10^{-4})$
Acceptance corrected hadrons	6	7
Acceptance corrected leptons	17	13
Luminosity (theoretical)	0	5.4
Luminosity (experimental)	3	3.4
Photonic correction to $\sigma_{\ell^+\ell^-}^{\text{pole}}$	0	2

Systematics on radius measurement

Item	Systematic sources	ΔR
a	Calibration plate radius	$0.7\mu{ m m}$
ь	Calibration plate distortions	$1.0\mu{ m m}$
с	Microscope stability	$1.45\mu\mathrm{m}$
d	Half-ring separation stability	$1.9\mu{ m m}$
e	Cover plate reproducibility	$1.5\mu\mathrm{m}$
f	Layer 7 measurement error	$0.6\mu{ m m}$
g	Changes between metrology & operation	$3.0\mu\mathrm{m}$
h	Operating temperature expansion	$0.4-0.8\mu\mathrm{m}$
i	Low detector polygon correction	$0.25\mu{ m m}$
	Total radial metrology systematic error	$4.4\mu{ m m}$
	Corresponding error in acceptance	1.4×10^{-4}

Systematics on z measurement

Systematic sources	1993-4	1995
Position of layer 7 relative to calorimeter reference face	$34\mu\mathrm{m}$	$60\mu\mathrm{m}$
Length of the pressure and beam pipes	$31\mu\mathrm{m}$	$31\mu\mathrm{m}$
Position monitor stability	$5\mu\mathrm{m}$	$2\mu{ m m}$
Reference pipe temperature during calibration	$10\mu m$	$0\mu\mathrm{m}$
Reference pipe temperature during operation	$15\mu\mathrm{m}$	$4\mu\mathrm{m}$
Total axial metrology systematic error	$50\mu{ m m}$	$68\mu{ m m}$
Corresponding error in acceptance	0.41×10^{-4}	$0.55 imes 10^{-4}$

Mogens Dam / NBI Copenhagen

MDI Workshop

17.11.2023

OPAL Breakdown of Systematics

Table 24: This table summarizes the experimental systematic uncertainties on the absolute $L_{\rm RL}$ luminosity measurement for the nine data samples. The lines labeled correlated and uncorrelated refer to errors correlated and uncorrelated among the samples. All errors are in units of 10^{-4} .

2
2
0
.
Ö
1
2
E
*,

2	
a	
5	
<i>b</i>	
せ	
ر ص	
2	

× 10⁻⁴

Uncertainty	section	93 -2	93 pk	93 +2	94a	94b	94c	95 -2	95	95 + 2
Radial Metrology	2.3									
uncorrelated		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
correlated		1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40
Radial Thermal	2.3.2									
uncorrelated		0.06	0.00	0.06	0.09	0.11	0.11	0.25	0.25	0.25
correlated		0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18
Inner Anchor	4.1.4									
uncorrelated		0.23	0.23	0.23	0.23	0.23	0.23	0.58	0.58	0.58
correlated		1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36
Outer Anchor	4.1.4									
uncorrelated		0.13	0.13	0.13	0.13	0.13	0.13	0.28	0.28	0.28
correlated		0.31	0.31	0.31	0.31	0.31	0.31	0.30	0.30	0.30
Z Metrology	2.4									
uncorrelated		0.00	0.00	0.00	0.00	0.00	0.00	0.37	0.37	0.37
correlated		0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41
Background	8	0.70	0.70	0.70	0.77	0.75	0.75	0.70	0.70	0.70
uncorrelated		0.76	0.76	0.76	0.75	0.75	0.75	0.76	0.76	0.76
correlated	6	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
Ingger	8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
uncorrelated		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Wagon Tagger	6	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
uncorrelated	8	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.02	0.02
correlated		0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.02	0.00
Total External (Acart)		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
uncorrelated		0.81	0.81	0.81	0.80	0.80	0.81	1.10	1.10	1.10
correlated		2.16	2.16	2.16	2.16	2.16	2.16	2.16	2.16	2.16
Energy	4.3	2.20		2.20	2.20	2.20	2.20	2.20	2.20	
uncorrelated		0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
correlated		1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80
Beam parameters	8									
uncorrelated	l ĭ l	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57
correlated		0.57	0.57	0.57	0.57	0.57	0.57	0.76	0.76	0.76
Radial resolution	8									
uncorrelated		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
correlated		0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
Acollinearity bias	8									
uncorrelated		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
correlated		0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36	0.36
Azimuthal resolution	8									
uncorrelated		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
correlated	6	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
Clustering	8	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
uncorrelated		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
$\Delta P = \Delta \Theta$ out difference	63	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
uncorrelated	8.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
correlated		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
M C statistics		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
uncorrelated	8	0.29	0.27	0.29	0.33	0.13	0.25	0.36	0.34	0.32
correlated		0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
Total Simulation $(\Delta \epsilon_{im})$		5.60	5.65	5.00	0.00	0.00	5100	5.60	5100	5100
uncorrelated		0.65	0.64	0.65	0.67	0.59	0.63	0.68	0.67	0.66
correlated		2.32	2.32	2.32	2.32	2.32	2.32	2.37	2.37	2.37
Grand Total		3.52	5.62		5.02		2.02	2.001	3.01	
uncorrelated		1.04	1.03	1.04	1.04	1.00	1.03	1.20	1.28	1.28
correlated		3.17	3.17	3.17	3.17	3.17	3.17	3.21	3.21	3.21

Radial Metrology : 1.4

"Inner Anchor"	:	1.4
----------------	---	-----

Z Metrology : 0.4

Energy Measurement : 1.8				
Beam Parametrers :	0.6			

Clustering : 1.0

ILD LumiCal (i)

ILD LumiCal (ii)

Information on this and following slide: Work of Krakow group

- EUDET-Memo-2008-13 •
- EUDET-Memo-2009-10 •
- EUDET-Memo-2010-06 ۲

30 layers of $1 X_{o}$ deep tungsten 30 Si layers (320 microns)

- segmentation 1.8 mm x 7.5° Depth:
 - Calorimeter: • 134 mm
- Total (incl. support): 175 mm • Inner radius:
- Sensitive: 80 mm • Mechanical: 76 mm Outer radius:
 - Sensitive: •

•

•

- Mechanical:
- 195.2 mm 232 mm

ILD LumiCal (iii)

LumiCals @ FCC-ee

Challenge:

- MDI region is very busy, LumiCals pushed deep inside detector volume

CDR LumiCal Design

Design considerations:

 Need to control geometry to precision of *O*(1 μm)

Keep geometry as simple as at all possible

Multilayer barrels where all layers have identical circular geometry

- ◆ 25 layer SiW sandwich
 □ 3.5 mm W (1 X₀) + 1.0 mm gap for Si sensors
- Physical dimensions

□ Sensitive region: *r* = 54-115 mm

□ Region for "services": 115-145 mm

□ Calorimeter front face at *z* = 1074 mm

Proposed segmentation

32x32 pads/layer (1.9 x 10-22 mm² pads)
 25,600 channels per LumiCal

♦ Weight

□ About 65 kg per LumiCal

Condiderations and Concerns

- Considerations for improved precision on radial coordinates:
 - Construct LumiCals as full barrels and not (as previously) as two half barrels
 - Avoid uncertianty from half barrel separation
 - Fabricate each Si layer from one single Si crystal
 - Uncertainty on inner (and outer) radius basically controlled by "Hamamatsu"
- Concerns:
 - By (ignorant) design, LumiCal sits very close to incomming beam pipe
 - Only 1 mm clearance is this sufficient ?
 - □ For control of LumiCal geometry, temperature shall be controlled to O(1 degree) and gradients should be minimized
 - Again the close proximity to the beam pipe is a concern What is its temperature?
 - High temperature would also accelerate aging
 - Aim to operate at "room temperature"

Acceptance and tolerances

- ♦ Effective Moliere radius of W-Si sandwich: ~15 mm
- Stay 1 Moliere radius away from inner radius and somewhat more from outer radius
 - To be optimised simulation studies ongoing
- ♦ => Wide acceptance: 62 88 mrad
- ◆ Slightly smaller narrow acceptance: 64 86 mrad
 - Bhabha cross section: 14 nb

Compared to 30 nb multihadronic Z decays at peak

♦ Geometrical tolerances for shift in acceptance of 10⁻⁴:
 ■ Inner border: δΘ_{min} = ± 1.3 µrad; δR_{min} = ± 1.5 µm
 ■ Outer border: δΘ_{max} = ± 3.0 µrad; δR_{max} = ± 3.3 µm
 ■ Half distance between two calorimeters: δZ = ± 55 µm

Geometric tolerances - radial

Centering of calorimeters around beam line

Geometric tolerances on positioning w.r.t. IP – longitudinal

Geometric tolerances – longitudinal (ii)

- Now, have two distances, Z₁ and Z₂, to measure, each to ±55 μm
 To be measured w.r.t. fiducual marker indicating nominal IP position
- Offset / walk of the IP of the order of few mm in the longitudinal direction still tolerable

Notice:

- As indicated, the face of each LumiCals shall be perpendicular to the corresponding outgoing beam line.
- The two faces will not be parallel, they are each tilted by 15 mrad w.r.t. the global coordinate system.

Summary of geometric tolerances

Material in front of LumiCals

OPAL

- High rate showering into LumiCal acceptance?
- To be studied studies starting...

LumiCal Integration !!

Copied from F. Palla's talk yesterday

Problems with CDR LumiCal design

- Stays inside 100 mrad cone around z-axis (bisector of beam lines)?
 Certainly not!
- Stays inside 150 mrad cone around z-axis ?
 Yes, per design!
- Sits asymetric w.r.t. the main detector symmetry axis
 It is, of course, LumiCal which sits "correct" w.r.t. the (forward) physics
- In global coordinate system
 - $\square \ \varphi$ dependent full depth coverage of scattering angle (θ)
 - ✤ Minimum scattering angle: 35.2 65.2 mrad
 - Maximum scattering angle: 81.3 -- 111.3 mrad
 - To ensure hermeticity: forward ECAL must cover down to 81 mrad
 Inner hole: No instrumentation below a φ-dependent θ angle
 - Maximum: 61 mrad
 - Minimum: 31 mrad

Yes, it is really rather confusing with the two systems

Centered on outgoing beam but still "symmetric" in global system

Coverage from global θ = 35 to 110 mrad for "all" ϕ

Summary & Conclusions

◆ Very ambitious FCC-ee absolute normalisation goal of 10⁻⁴

Description of the second sector of the second s

- Compared to LEP, the FCC-ee LumiCals are placed in a more complicated location
 At about z=1 m from the IP, inside the general detector volume
- Many challenges

Detector geometry to be controlled to *O*(1 μm) in radius
 Distance between the two monitors to be controlled to 100 μm
 LumiCal design squeezed from two sides

- * i) Stay away from beam pipe; and ii) Stay inside 150 mrad cone
- * Visible cross section rather small: 14 nb compared to 30 nb for $Z \rightarrow qq$

□ Furthermore, the CDR design has a hermeticity challenge

- Coverage towards very small angles
- ✤ Overlap with lower edge of forward ECAL
- Detailed simulation studies needed
 - Currently in start-up phase
- Proper engineering design needed

[4.4 μm achieved in OPAL][100-140 μm achieved in OPAL]

Extra slides

LumiCal CDR Design

- W+Si sandwich: 3.5 mm W + Si sensors in 1 mm gaps
 Effective Molière radius: ~15 mm
- ◆ 25 layers total: 25 X_o
- Cylindrical detector dimensions:

□ Radius: 54 < r < 145 mm
 □ Along outgoing beam line: 1074 < z < 1190 mm

Sensitive region:

□ 55 < r < 115 mm;

- Detectors centered on (and perpendicular to) outgoing beam line
- Angular coverage (>1 Molière radius from edge):
 - Wide acceptance: 62-88 mrad
 Narrow acceptance: 64-86 mrad
 Bhabha cross section @ 91.2 GeV: 14 nb
- Region 115 < r < 145 mm reserved for services:

- Red: Mechanical assembly, read-out electronics, cooling, equipment for alignment
 Blue: Cabling of signals from front-end electronics to digitizers (behind LumiCals?)
- Precision goal: 1 x 10⁻⁴

LumiCal CDR Design

- W+Si sandwich: 3.5 mm W + Si sensors in 1 mm gaps
 Effective Molière radius: ~15 mm
- ▲ 18 layers total 22 X_o
- Cylindrical detector dimensions:

■ Radius: 54 < r < 145 mm ■ Along outgoing beam line 2460 < z < 2600 m

• Sensitive region:

62 < r < ₁₄₂ nm;

- Detectors centered on (and perpendicular to) outgoing beam line
- Angular coverage (>1 Molière radius from edge):
 - Wide acceptance: 27-55 mrad
 Narrow acceptance: 31-51 mrad
 Bhabha cross section @ 91.2 GeV: 83 nb
- Region 115 < r < 145 mm reserved for services:

Red: Mechanical assembly, read-out electronics, cooling, equipment for alignment

Blue: Cabling of signals from front-end electronics to digitizers (behind LumiCals?)

Precision achieved: 3.4 x 10⁻⁴

LumiCal Support – Interesting proprosal in Krakow

Detector Constraints for the FCC-ee Interaction Region and Luminosity Measurement

FCC-ee MDI & IR Mockup Workshop Nov 16 – 17, 2023 Laboratori Nazionali di Frascati

Mogens Dam Niels Bohr Institute, Copenhagen