Belle II Mock-up Studies

Overview of Belle II at SuperKEKB

- Central IP chamber
 - reduced ID of 20 mm
 - two concentric Be pipes (d=0.6 & 0.4 mm)
 - 1 mm gap for paraffin cooling

- Belle II tracking devices (17° to 150°)
 - PXD Pixel Vertex Detector (@ r=14 & 22 mm)

carsten.niebuhr@desy.de

- SVD Strip Vertex Detector (4 layers DSSD)
- CDC Central Drift Chamber

FCC-ee MDI & IR WS, 16-17 Nov 2023 Belle II / SuperKEKB Lessons

Belle II Vertex Detector VXD

CAD view without services

Belle II Vertex Detector VXD

CAD view without services

- 4 layers of 172 double-sided silicon strip detectors (DSSDs)
- 768 strips in p-side, 768(512)strips in n-side
- r=3.8cm, 8.0cm, 11.5cm, 14cm; L=60cm
- ~1m²

Beam pipe

 Image: Signed state
 Image: Signed state

 Image: Signest
 Image: Signed state

Pixel Dector (PXD)

- 2 layers of 40 DEPFET sensors, 75 μm
- 7.68 million pixels
- r=1.4cm, 2.2cm; L=12cm
- ~0.027m²

Belle II Vertex Detector VXD

CAD view without services

VXD ready for installation into Belle II

Large amount of services for: Signal cables, beam diagnostics, beam pipe&detector cooling

Thermal Mockup

VXD Cooling Environment

FCC-ee MDI & IR WS, 16-17 Nov 2023 Belle II / SuperKEKB Lessons

VXD Heat Dissipation and CO₂ Cooling Circuits

CO ₂ Circuit	Detector	Half	Layer	Туре	Side	Power [W]
1		110	1&2	endring	bwd	90
2		up	1&2	endring	fwd	90
3	FAD	down	1&2	endring	bwd	90
4		uown	1&2	endring	fwd	90
	360					
5	SVD	left	3-6	endring	bwd	93
6		right	3-6	endring	bwd	93
7		left	3-6	endring	fwd	93
8		right	3-6	endring	fwd	93
9		left	4&5	origami	bwd	68
10		right	4&5	origami	bwd	68
11		left	6	origami	bwd	96
12		right	6	origami	bwd	96
sum SVD						700
sum VXD						1060

Combined Support Cooling Block (SCB), manufactured using 3D printing technology, with CO_2 and N2 channels inside.

plus parasitic heat load from the environment

VXD Heat Dissipation and CO₂ Cooling Circuits

CO ₂ Circuit	Detector	Half	Layer	Туре	Side	Power [W]
1			1&2	endring	bwd	90
2	חעם	up	1&2	endring	fwd	90
3		down	1&2	endring	bwd	90
4		uown	1&2	endring	fwd	90
sum PXD						360
5		left	3-6	endring	bwd	93
6	SVD	right	3-6	endring	bwd	93
7		left	3-6	endring	fwd	93
8		right	3-6	endring	fwd	93
9		left	4&5	origami	bwd	68
10		right	4&5	origami	bwd	68
11		left	6	origami	bwd	96
12		right	6	origami	bwd	96
sum SVD						700
sum VXD						1060

Combined Support Cooling Block (SCB), manufactured using 3D printing technology, with CO_2 and N2 channels inside.

plus parasitic heat load from the environment

VXD Cooling Circuit Parameters

	P	(D	End	ring	Origami L45		Origami L6	
L	./mm	ø/mm	L/mm	ø/mm	L/mm	ø/mm	L/mm	ø/mm
7	7120	1	7120	1	7120	1	7120	1
	660	1	660	1	660	1	660	1
	575	1						
	500	1.0	2079	1.5	2282	1,4	4909	1,4
	555	1,2	2070	1,5	3013	1,4		
	575	1,2						
	660	2	660	2	660	2	660	2
7	7120	3	7120	3	7120	3	7120	3

PXD		Endring		
L/mm	ø/mm	L/mm	ø/mm	
7390	1	7390	1	
1180	1	1180	1	
600	1			
580	1,2	1585	1,5	
600	1,2			
1180	2	1180	2	
7390	3	7390	3	

FCC-ee MDI & IR WS, 16-17 Nov 2023 Belle II / SuperKEKB Lessons

VXD Cooling Circuit Parameters

VXD Cooling Requirements and Thermal Mockup

- Power consumption
 - PXD 360W
 - SVD 700W
 - required cooling capacity of ~ 2-3kW
- In total need 12 independent cooling circuits
 - 4 PXD SCBs (90W)
 - 4 SVD endrings (93W)
 - 4 SVD origami cool. pipes (68/96W)
- Constant temperature at inner surface of CDC is important for stable calibration and dE/dx performance
 - minimise thermal effects of VXD

For a number of VXD components, the construction of the mock-up has served as a very useful and important exercise in the pilot assembly process

PXD Thermal Dummy Ladders

- The fragile 75µm thick dummy sensors are made of silicon, like the real detector, to study their thermal performance
- Resistive dummy loads are integrated to simulate the power distribution in the working ladder
 - main power dissipation of read-out ASICs at end of stave (EOS) outside of physics acceptance
 - integrated NTC sensors to monitor temperatures at EOS and in sensor region
- An additional power of 25 W is applied to the Kapton cables to simulate their power dissipation

PXD Thermal Mock-up

PXD Thermal Mock-up

SVD Thermal Mock-up Components

SVD Thermal Mock-up Components

SVD Thermal Mock-up Components

Emulating the inner CDC wall: Warm Dry Volume

Pressure Drop in Cooling Circuits

PXD Temperatures with fully operational VXD

□ Relatively big contribution of pressure drop in transfer flex line, to ensure balanced CO₂ mass flow in each circuit.

L3 Thermal Management Problem

FEA analysis on L3- after DESY BEAM test Apr.16 - confirmed a

thermal gradient from cooling pipe to FW-APV about 90°C

 $N \rightarrow P$ side ~20°C

Thermal Radiation

foil covers the out surface of VXD shield.

Temperature on SVD Ladders

CO2@-25°C: Temperature in the middle of L.3 sensor is 11°C, it's strongly influenced by PXD, therefore relies on the injected N₂ flow.

For L4/5/6, with nominal load, the maximum temperature on FW/BW edges and module ASICs reach about 25-30°C.

SVD L3 Sensor Temperature

After PXD powered up, temperature at L.3 ASICS increase about 1°C

11

10

Selected topics studied using the thermal mock up Most of the gradient (~45°C) is in the endring finger, made of stainless steel. With the foil. • Temperatures on the inner/outer surface of CFRP shield decreases by ~0.5°C A first draft of the insert (K.Gadow) and thermal analysis No influence on temperatures on the ladders (M.Friedl) confirmed the functionality of this solution.

Study Influence of N₂-Line Temperature

PXD temperature largely independent of N₂ input temperature at SCB

SCB cooling of N₂ is guite efficient

N₂ flow rate plays the dominant role

T(SVD L3 sensor) /°C -7

FCC-ee MDI & IR WS, 16-17 Nov 2023 Belle II / SuperKEKB Lessons

Humidity with N₂ Flow in Dry Volume

Heat Transfer through Cables

Electronic cables are insert to FW -x half endring, contacting L.5, L.6 endrings. No significant temperature change at the endflange is observed. → Little influence from cables' thermal conductivity.

Nucl.Instrum.Meth.A 896 (2018) 82-89

About 5°C's gradient on the top/bottom of inner side of CFRP shield . ●

Study Onset of Dry-out

When the vapor quality gets too high, there will be no liquid film on the capillary walls, then result in a shape increase of the cooling block temperature.

The dry out happens in the last 6 sensors

carsten.niebuhr@desy.de

14

(mm)

Amplitude

RVC Mock-up

Establishing Vacuum Connection in an inaccessible Area

Front end flange view prior to QCS insertion

FCC-ee MDI & IR WS, 16-17 Nov 2023 Belle II / SuperKEKB Lessons

Establishing Vacuum Connection in an inaccessible Area

.

QCS moving in

FCC-ee MDI & IR WS, 16-17 Nov 2023 Belle II / SuperKEKB Lessons

RVC Mock-up Design

- a. QCS vacuum vessel
- b. QCS beam pipe
- c. beam pipe bellow parts
- d. crotch beam pipe flange

RVC Operation

Before closing

After closing

In the real system at KEK, can watch the QCS approach with a camera attached to the VXD end flange

FCC-ee MDI & IR WS, 16-17 Nov 2023 Belle II / SuperKEKB Lessons

Travel Limiter

RF fingers have to be kept in position

Travel Limiter to keep RVC flange in connection position and secure RF bridge

Other Reliability Issues

- Initial design included use of hydraulic oil
 - first version of mock-up used NBR (nitrile-based) as seal material due to its excellent resistance to hydraulic fluids
 - however, uncertain whether the rubber seal used in the hydraulic system would retain its mechanical properties under intense radiation
- Decided to move to 60 bar operation with N₂
 - allows the use of EPDM based material

Radiation Hard Elastomer Seals

Ethylene-propylene (EPDM) based materials

Specially developed materials based on ethylene-propylene are highly regarded by the nuclear industry for their many invaluable features, including:

- Outstanding radiation resistance.
- Excellent resistance to a wide range of chemicals.
- Resistance to aging.
- Exceptional low temperature flexibility.
- Economical price.

Our EPDM elastomers are formulated to have very low levels of ions such as Cl⁻ and SO₄²⁻ that can leach from materials to promote metalwork corrosion within a nuclear reactor.

Our two leading grades of EPDM-based materials with radiation resistance are designated Shieldseal 661 and 662.

Shieldseal[®] 662 Description

Shieldseal 662 is a medium-hard grade of EPDM-based elastomer, developed for general applications where ionising radiation is present.

www.jameswalker.biz/es/pdf_docs/46-shieldseal

Operational properties

Hardness: 70 IRHD Compression set: 64%, when irradiated with a total dose of 1MGray at RT. Compression set: 27%, when irradiated with a total dose of 80kGray at 90°C.

- EPDM seals certified up to 1 MGray at room temperature
- Comparing mechanical properties (compression set) before and after irradiation at Synergy Health Radeberg 0.5 / 1 MGray @ 1.5 kGray/h

FCC-ee MDI & IR WS, 16-17 Nov 2023 Belle II / SuperKEKB Lessons

Result of Integral Helium Leak Test

Leaktest 17.06.13

- Result of "longterm test"
 - vacuum seal still Helium-tight after 6 weeks: leak rate below 3x10⁻¹² mbar l/s
 - continuation problematic since we had to return leak tester to vacuum group

FCC-ee MDI & IR WS, 16-17 Nov 2023 Belle II / SuperKEKB Lessons

Verification of mechanical Repeatability and Reproducibility

Position Encoder

Verification of mechanical Repeatability and Reproducibility

Position Encoder

Opening and closing repeated 10 times

Other mechanical Tests

Verification of the Emergency De-Installation Concept

Verification of the Emergency De-Installation Concept

- In the event of RVC failure on QCSR, a mechanism is required to extract QCSR together with VXD in forward direction
- Implement a simple Bowden mechanism that can be used to pull out the VXD
 - if RVC fails simultaneously on QCSL, vacuum connection can still be opened due to reduced space requirements

Verification of the Emergency De-Installation Concept

VXD Installation ring

- In the event of RVC failure on QCSR, a mechanism is required to extract QCSR together with VXD in forward direction
- Implement a simple Bowden mechanism that can be used to pull out the VXD
 - if RVC fails simultaneously on QCSL, vacuum connection can still be opened due to reduced space requirements

RVC Test Setup in full Glory

Summary

- For the successful installation and operation of the Belle II Vertex Detector in the challenging environment of SuperKEKB, the design, construction and optimisation of various mock-ups proved to be essential
- A complete and realistic VXD thermal mock-up was used to validate the planned cooling concept
 - manufacture and installation of a number of critical components could be practised for the first time under realistic conditions
 - operating parameters could be established prior to installation of the real detector
 - operation of the mock-up helped to identify a design flaw that could be corrected
- The Remote Vacuum Connection mock-up was absolutely crucial to optimise the design and to prove that the concept was applicable to SuperKEKB

Expected Heat Load on IP Chamber

FCC-ee MDI & IR WS, 16-17 Nov 2023 Belle II / SuperKEKB Lessons

Modification of Beam Pipe

Ladder Bowing in PXD1 due to Beampipe Heating

FCC-ee MDI & IR WS, 16-17 Nov 2023 Belle II / SuperKEKB Lessons

Modified Bayonet Structure

Modification allows independent rotation of bayonet part and piston
 ⇒ avoid friction between rubber seal and cylinder housing

Background Extrapolation before and after LS2

	- 0		
Setup	Before LS2	Target	Design
$\beta_{\rm v}^*$ (LER/HER) [mm]	0.6/0.6	0.27/0.3	0.27/0.3
$\dot{\beta_{\rm x}^*}$ (LER/HER) [mm]	60/60	32/25	32/25
$\mathcal{L} \ [imes 10^{35} \ { m cm}^{-2} { m s}^{-1}]$	2.8	6.0	8.0
I(LER/HER) [A]	2.52/1.82	2.80/2.00	3.6/2.6
$\bar{P}_{\rm eff.}$ (LER/HER) [nPa]	48/17	52/18	133/133
$n_{\rm b}$ [bunches]	1576	1761	2500
$\varepsilon_{\rm x}$ (LER/HER) [nm]	4.6/4.5	3.2/4.6	3.2/4.6
$\varepsilon_{\rm y}/\varepsilon_{\rm x}$ (LER/HER) [%]	1/1	0.27/0.28	0.27/0.28
$\sigma_{\rm z}$ (LER/HER) [mm]	8.27/7.60	8.25/7.58	6.0/6.0
CW	ON	OFF	OFF

- By continuing to improve our MC simulation, we have achieved good agreement between measured and simulated beam-induced backgrounds
 - This allows us to predict background levels reasonably well up to LS2
- However, no optics yet available for post-LS2 machine setup
 - Different scaling factors of scenarios account for associated uncertainties

Figure 3.4: Estimated Belle II background composition for predicted beam parameters Before LS2. Each column is a stacked histogram of BG rates from dedicated MC samples scaled with average Data/MC ratios listed in Table 3.3. The red numbers in rectangles are detector safety factors, showing that Belle II should be able to operate safely until a luminosity of $2.8 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$ with some important caveats, discussed in the text.

Figure 3.5: Estimated beam background rates in Belle II for After LS2 operation at luminosity of $6.0 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$. The numbers in rectangles are detector safety factors for Scenario-2.