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Outline

Part | (MarcoB)

* DAQ and streaming readout: triggered vs untriggered
* SRO requirements and opportunities

* An example: (future) ePIC@QEIC (BNL) SRO scheme
* Al in real-time data analysis

* Partial realtime data reconstruction (clustering)

* Fast inference

* Data reduction

Part || (FabioR)
* Application to data reduction
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From signals to physics
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CMS@LHC

¢ O(107) canali

eWord-size = |-14 bit

e Rate (bunch crossing) ~40 MHz (1/25ns)
eRate = 600TB/s ()

Run Number: 177531,
Evenl Number: 183704
. 2 20:3
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Range compression | data buffering
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"I." Digital filter Data Collection Event Building event buffering
A — Zero suppression ¢
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. dils 4 event rejection
: Buffer [Processmgﬂ Event Filtering | _ _ bdff i
A Feature extraction J
1
Buffer o - file storage
——  Format & Readout EventLogging .- )\ fering
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DAQ chain \} to Data Acquisition System
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Triggered DAQ
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S t=1ms
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* (few) trigger Channels
participating send (partial)
information to trigger logic

Traditional (triggered) DAQ

Traditional tnggered

-

: Digitize

u/ Loial \1 \Q l

| Trigger ]
LAV

Acquire

* All channels continuously measured,
hits stored in short term memory

[ /Data
@%ready
n/ Global \J ‘\ |
@'S '\ Trigger / l
-
LHC Expermenis DAQ \.

Level-1Event Storage |
kHz MByte MByte/s

N N N N

~¢ : / ATLAS 100 1 100 * Trigger logic takes time to decide and if the /
3 trigger condition is satisfied: | Store Traditional triggered DAQ
. * a new ‘event’ is defined N\ | » Pros
* trigger signal back to the FEE l * we know it works reliably!
CMS 100 1 100 * data read from memory and stored on tape
— > Drawbacks:
_ M * only few information forms the trigger
Files * Trigger logic (FPGA) difficult to implement and debug
LHCb 1000 0.04 80 * not easy to change and adapt to different conditions

.,-—-"’_,.‘

e =S ALICE 1 25 1250
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Streaming RO

I _ﬁ
mme{tZam g — e — — ——CPU/GPUTPU| —H
Shaping VA?K'Scde { / Lo FADC — I\L/Jl — g!gna: ——Reconstruction — CPE Clutster | o
Detector f TDC — x —p gna —1 Sub-Detector — ven
FE m— P @ _) ——] Processing — Level —] Selection
T Why SRO i i tant?
: IS SO ImMportant!
Streaming read out (SRO) Y P
Streaming * High luminosity experiments
* Write out the full DAQ bandwidth
'/ o N\ xAll channels continuously measured and hits * Reduce stored data size in a smart way
i |\ Digitize | streamed to a HIT manager (minimal local (reducing time for off-line processing)
. . 4 N\ | processing) with a time-stamp
* A HIT MANAGER receives hits | - : y * Shifting data tagging/filtering from the front-end (hw) to the
from FEE, order them and ship \ Trigger /
to the software defined trigger \ N\ back-end (sw)
. Acquire | « Optimize real-time rare/exclusive channel selection
J * Use of high-level programming languages

l * Use of existing/ad-hoc CPU/GPU farms
* Use of available Al/ML tools

* Software defined trigger re-aligns

N

| Store . '
in time the whole detector hits 7 N\ ‘ "\ (future) use of quantum-computing
applying a selection algorithm to : _(|_3|°ba| | l * Scaling
the time-slice | rngger
+ the concept of ‘event’ is lost N % / N\ SRO DA * Easier to add new detectors in the DAQ pipeline
* time-stamp is provided by a »  Process ‘l R Q * Easier to scale
synchronous common clock L / Pros ,
distributed to each FEE | » All channels can be part of the trigger * Easier to upgrade
* Sophisticated tagging/filtering algorithms .
/ N\ * high-level programming languages Many NP and HEP experlments adopt a SRO DAQ
| ‘ * scalabilit
, Store | 4
L / * Drawbacks:  CERN: LHCb,ALICE,AMBER * FRIBS: GRETA
* we do not have the same experience as for e FAIR: CBM e BNL: sPHENIX
TRIGGERED DAQ » DESY:TPEX » JLAB: SOLID, BDX, CLASI2, ...
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Streaming RO

- e FEE optimised for SRO
m re E i oASICS. (cheap) or fADC (multiplexing) at (O($10/ch)
i TDC — — ‘ e TDC if necessary to replace fADC
/ =4 e Zero-suppression mode

e Fast readout (optical link)

e Signal pre-processing with fast hw (dedicated FPGA)
e de-multiplexing fADC info

Digital

| e Charge, time, amplitude
| Processing

e Data compression

|H|H
é’.

e Data monitoring
e Add other information (e.g.ch_ID eTimeStamp)

——{CPUIGPU/TPU
L ——j ot — » e CPU/GPU/TPU sub-detector analysis (single stream)
T e Local clusters,track segments,PID,...
e Time-frame building
o If necessary only store high-level data dumping raw
— Time frame
— builder e TF-Router Time frame construction
e Use time stamps to reorganise data from all streams in time frames
—e
— PUame| o Full reconstruction CPU analysis (for each time frame)
—— Selection
Counting room/experiment Data center
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ePIC Streaming Computing

ePl& EIC Streaming Readout Architecture

|

I
VDS =~ 5m
Analog ~ 20m

[©

== Configuration & Control

Power Supply System
(HV, LV, Blas)

data reduction

*ATHENA estimates
assumed much move
Suppression at early

Streaming RO for ePICS

Power
Detector FEB FEP | DAQ
(Front End Board) | (Front End Processor) | (Data Acquisition) e Full consensus for SRO within the
| BW Oﬂooftlm«) > | BW 0\"0'%5)’\}' EIC community (Yellow Paper
|V T N DAQ models in ECCE, ATHENA,
: ' J Beam collision clock‘{nput . )

o ! :C*‘"O’:'J‘“‘“i;’ e« Rates at ePICS are not
' comparable to LHC HI-LUMI but
| < :5' advantages of SRO remain:

e | w tactor of 100 in  multiple channels to trigger on
= G

* Holy Grail: to manage (storage)
an unbiased (un-triggered) data
set for further analysis

 on/off-line event selection with
full detector information

L Cooling Systems stages, but st 100Gbps
L ’ output. (See J. Landgraf
. , talk at SRO X)
EIC Streaming Readout (From Fernando Barbosa's talk at AIEIC Sep. 9, 2021)
J on Lab Kickstarting the ePIC Computing Plan : 2023-07-18 : D. Lawrence : ePIC SRO WG Meeting ?
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ePIC Streaming Computing

ePIC Software & Computing Meeting

20-22 Sp 2023 Interfaces
UIC Student Center East Tover Presented by Jin at UIC Meeting on Sept 21 2023

ePIC streaming computing: follow the data & zoom out * Each step in the workflow has

a different latency

: . * Identify interfaces for a
Throughout the data flow: monitoring, QA, feedback towards operation $ee also: next session on reco. 4

: 1 ] ‘service-oriented’ approach

f / Online reconstruction,
|/ 0(1000) / 0(1000) /  ©(100) 0(100) , 0(10)PB EL,MM
| - Online Computer  [[FT) o m
(Readout, "
compression) / Offline infrastructure o ‘ :
(Buffer, Calibration, Within the ‘control room
Processing, Analysis 10) )
: O(100k}cores * Each stage in data flow
7\ .
— Lo - 96 Gb/sec Ot180jP8 requires 1O specs (based on
——— Comnsipsl 3G - CPU, GPU, FPGA reduction)
Synchrotron Rad 01 Gb/sec Fau safe) . ’
,. Electron Beam 226b/sec : * ‘control room’ boundary based
Aggregate 20Thbec Hadeon Besmn Lo : on permanent data storage
Per RDO (Avg) 7 Gb/sec Noise 32 Gb/sec -
I Before Permanent storage: data readout with minimal loss of collision signal > E After: make sense of data >
IIILIaItIeIIan IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
. . >
Ons 0O(100)ns O(1)us O(10)us O(1)min O(1)min-O(1) day O(1)day-O(1)week Outside the control room
. egens ° I
Possible facilities: Networking
T >
On detector On detector/rack DAQ room Host labs/Echelon 1 facility =~ Remote resources * CPU/GPU farm

 Local/remote resources

Reference: °  ©PICDAQuwiki: httos://wiki.bnl.gov/EPIC/index.ohp title=DAQ * on/off-line analysis
*  ECCE computing plan, Nuclinstrum Meth A 1047 (2023) 167859

Jin, also for Marco, Markus, Jeff, Torre ePIC Software & Compuling Meeting at UIC 6

)
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Al-supported algorithms for SRO

Real Time data analysis
* In the SRO scheme, data analysis is performed online [this does not prevent to save unbiased frames for further analysis!]
* A sw trigger is released based on real-time data analysis
* SRO and real-time data processing NEED Al to adapt data analysis to the changed conditions of the run (e.g. thresholds)
* ldentify data features in real-time (e.g.clusters)
* Use a data subset to extract calibration constants
* Define algorithms to run (fast!) in real time on heterogeneous systems (e.g. CPU+GPU+FPGA)

Fast inference

, , . . * Fast algorithms to extract data features to be used in data
Partial Real-Time data reconstruction: clustering selections (and reduction)

* Look at all detector information (hit: x, y, t, E) to learn * Mimicking a smart ‘trigger’
correlations: clusters of objects share common features

* Define a metric in a space and identify cluster features
* Tests on minimum bias trigger data before real-time
* Hyperparameters optimization based on data

* provide partial reconstructed quantity quickly

Calibration

* Use smart algorithms to extract data features and correct
detector parameters varying over time

* toward a self-calibrating detector
Data reduction

* reduce data volume to a manageable level with minimum bias

)
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Nuclear Physics

A Trial Run for Smart Streaming Readouts

Streaming RO tests

Streaming RO

On-line
Back-end reconstr
uction

Front End
Electronics

SRO concept validation

Storage
1) Assemble SRO compon

—P |(off line

analysis)

Detector
Hall-B

The Science
'—‘ \‘ —_ 8 l— o l: l "' I | Nuclear physics experiments are data intensive. Particle accelerators probe collisions
3 I of subatomic particles such as protons, neutrons, and quarks to reveal details of the bits that
make up matter. Instruments that measure the particles in these experiments generate torrents of
raw data. To get a better handle on the data, nuclear physicists are ing to artificial i Il'g
3 Test S Ro DA o n b eam and machine learning methods. Recent tests of two streaming readout s y ems that use such
) methods found that the systems were able to perform real-time pro ing of raw experimental

data. The tests also demonstrated that each system performed well in compar with traditional
systems.

Run Control

JLab SRO validation ® On-beam tests: :
) 10.4 GeV e- beam on thin Pb/Al target

Inclusive pi0 production
m e + Pb/Al -> Xe1?-> (X)eyy <
Two gammas detected in FT-CAL

* CLASI12 Forward Tagger

« Complete system that include calorimetry, PiD, Traking in a
simpler (than CLASI2) set up

FT-ECAL: 332 PbWO crystals, APD readout
FT-HODO: 224 plastic scintillator tiles, SiPM readout

| ADC250 digtirs + DREAMs for M @b’ scattered CLAS12
4(; 1 e- FT-CaI
CAD implementation e / / o beam Y
S - Wﬁ’\\g;
o g * CLASI2 Forward Tagger .- v
\ * Inclusive piO electroproduction -

« Two gammas detected into FT-CAL
* EM clusters identification, anti coincidence with FT-Hc

» Self-calibration reaction (pi0 mass) X - not detected

Scintillation
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Off-line analysis

*Two pi0 peaks corresponding to two 200
vertices (and a wrong assumption on the

vertex position)

Invariant mass

Invariant mass

350

300

250

llIIlIIlIIIIlIIII|I

150

100

l—lll|llll

¥2 / ndf 60.98 / 60
p0 208 +20.9
p1 ~-0.2832 + 0.2751
p2 166.4 +10.5
p3 101.1+0.2
p4 3.7+03
p5 -3.125+1.196
p6 150.9 + 16.4
p7 116 + 0.3
p8 3.833 + 0.351
P9 1089+ 7.6

Mass [MeV]

500 ——
—  Off-line reconstruction
400
B y, 200
o>
: g 180
300 — @ 160
B r 140
- 120
200 — oo}
B 80
100 — 60
B 40
- 20
0 ._l e T I | | | | | | | | | I | | | | |
150 200 250 300
Mass [MeV]

Shall we used Al to analyse data real time, extract features (e.g. number of peaks and position)?

)
C e @jlilb] 2

Al target *
window

Pb target

| } Nl | l

|

180
Mass_ [MeV/c)

120 140 160

Al in streaming readout data acquisition and real-time inference
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Semi-unsupervised: K-means

Semi-supervised Clustering: e.g., K-means

STEP 1: Choose the number K of clusters

STEP 2: Select at random K points, the centroids
(not necessarily from your dataset)

2 STEP 3: Assign each data point to the closest centroid
(That forms K clusters)

STEP 4: Compute and place the new centroid of each cluster

Iteration number 1l

Yes,

we cCcan:

semi

clustering using K-means

unsupervised

Table 2. The different metrics used for k-means.

STEP 5: Reassign each data point to the new closest centroid
If any reassignment took place, go to STEP 4,

otherwise go to FIN.
L Your Model is Ready

metric

2 2
(Xhit . Xmean) T (Yhit o Ymean)
(Xhir_Xmeun)3 2 (leit_yrrzc'(zrr)2 % 8 (thir_tnwun)2
L2 ch'cll (50 ns)2

cell A
(Yhit X mecm)h

3
(Xhit‘xmecm)"
2

+ 3 p)
L Lcell (50 ns)

Z‘r:ll

description
squared 2D space distance

squared 3D space-time distance

+ Unit—tmean)” | (Enit — Emmn)2 squared 4D space-time-energy distance

Table 3. The main parameters of the k-means algorithm are described and their values reported. For each
parameter, the last column shows when it intervenes, either if in the pre-processing or in the clustering phase.

t threshold
E threshold
time_window
count_cells
iterations
bad_distance
bad_time
norm_space
norm_time

norm_ene

parameter

description
minimum time of hits
minimum energy of hits
time difference between hits
active neighbor cells for each hit
k-means updates
max distance hit-cluster
max time difference hit-cluster
normalization space distance hit-cluster
normalization time difference hit-cluster
normalization energy difference hit-cluster

value [units]
0. ns
0. GeV
50 ns
>1
10 (30)
not used
not used
L_cell (cell length, see Tab. 2)
50 ns (see Tab. 2)
not used

phase

preprocessing

preprocessing

preprocessing

preprocessing
clustering
clustering
clustering
clustering
clustering
clustering

bool = At <50ns && AX <1&&AY <1&& (AX+AY) > 0 3.1)

For K-means we need to make some assumptions, in particular we need to provide the seeds.

Al in streaming readout data acquisition and real-time inference
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Unsupervised: hdbscan

: : : - hdbscan vs. K-means
Unsupervised: e.qg., Hierarchical Clustering v

Two different clusterings based on two different level-sets Core distance (defined by a required # of neighbors) as estimate of density K- means: SemI-SU Pe rV|Sed Pa ryam etI"IC ( K CI USteI" SeedS]
feﬂ?ﬁsaﬂﬁive»m be in a high density region and close to each other (“mutual Req uirements on c | usters:
* “round” or “spherical”
e equally sized, dense
o typically most dense in the center
* not contaminated by noise and outliers

hdbscan: unsupervised hierarchical clustering

Best performance when data are/have:
e arbitrarily shaped clusters
e clusters with different sizes and densities

® Noise
The area of the regions is the measure of “persistence”. :E:earn E'BMSeSXZ
© eamn
Maximize the persistence of the clusters under the constraint that they do ';' b00 Scipy K-Means
not overlap. o, o E;)s?cslfs;t\g
: . : : oy )
clusters are more likely regions separated by less likely regions -> densities £
. o CC) 150
* Off-line analysis to tune hyperparameters 2
-
r - SRR DR & e - N T T T I s
- 'standard™ ' [ hdbgican @
100 —
“Z‘ 1001~ —— benchmark 1 t\z ! NQ 100+ 8 100
5 | >t > | : ®
= = | =) ! £
< () i ( . N i L - .
X a 50 SRR o , A
A 2] . [ -« / i o 5 -
2 ks ! I i \ =
= E g A4 [\ | O
= = = /
o () ) \ '
! / ! 0
n | IS —— / PRI — \r\ R TR S S V_— — 0 50000 100000 150000 200000
M,y MeV/c') M,y [MeV/c’] M,, [MeV/c*] number of hits

INFN
(
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Al real time data analysis

SRO test @ JLAB results: Al vs standard clustering

C. Fanelli

Feb 2020 data_ I e Al clustering inspired by Hierarchical Density-Based

| Spatial Clustering of Applications with Noise (HDBSCAN)
It Is not cut-based
It Is able to cope with a large number of hits

|

:

IIII]ITIT]IIII]IIIII

—— cut-based clustering

111111

:

~—— unsupervised clustering ) e Compared yy-invariant mass spectrum obtained utilizing
both the standard and the HDBSCAN clustering
algorithm

Al significantly improves signal-to-background ratio

In the 0 region

A longer runtime of ~30% relative to the standard

clustering algorithm

:

combinatorial bkgd

llllllx

entries/2.0 [MeV/cz]

Al target Pb target

=

=

a
L
R TS

1 1 e Al clustering approach promising alternative to
100 200 traditional cut-based approaches

M(highest ene. clul, clu2) [MeV/c’]

A

F. Ameli et al,, Eur. Phys. J. Plus (2022) 137: 958

https://doi.org/10.1140/epjp/s13360-022-03146-2

14 ° ° ° ° (] - ° (] . . _
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GEM TRD tracks

Fast Al applications: GEM-TRD — 4000

180

drift time

—3500

160

_ —ppoo ¢« GEM-TRD copes with multiple tracks
pion electron 140
- Entrance 2500 e Fast pattern recognition algorithm: Graph Neural
o | window 120 200  Network (GNN)
L
ﬁ °
10 is0  * Track fitting: recurrent neural network — LSTM
Primary /, _gc: 80 1000
dE/dx TR -+ . . .
clusters/ “photonp o [ 8 60 s0o  *Implemented on FPGA using High Level Synthesis
mixture S 40 0 (hls4ml)
-50 0 50 100 150 200
- X strips
1 -Amplnfucaho 104 1 fake |1.07°
Readout region ue ] |
I GNN on FPGAs
° ° . o o o . 0.61
* e/pion separation based on ionization counting along track e imported by hands 10
0.41
* Electrons higher ionization (absorption of TR photons) * |.4us inference time 1] i
i 1 1 rl_ I | — purity
l. d.ete.ct hits * Good p(preliminary) results o | LT 'rj_lJ' H-A-Wﬂﬁn oof — emaeny |
2. hits in tracks 0.0 0.2 M%.:elou(zbsm 0.8 1.0 0.0 0.2Cut :r'\‘lmodgl.zcoreo.a 1.0
3. ionisation measurement
10° T———
GEM-TRD can work as micro TPC, providing 3D track segments RNN/LSTM on FPGAs 1T ZEZZSZ:' :3E | Zgi::
£ asf £as| * Only 19% of FPGA resources | ==~ etagger, AUC = 95.7%
N E I p tagger, AUC = 95.7%
I a0 | i e -~ * lus latency time -
. _ * Good (preliminary) performance N
251 o 25 |- :
5 :
20[ B 20 | 3
[ E >
e F MLP on FPGAs § 1077 ; S
[ [ __l" |/
F : * Only 3% of FPGA resources | : J_F
10 --f-------- e L el S ‘ N o
*65ns latency time ‘ !
i |
Y T 1 L 5baliiil 1 | .. r
15 <10 5 0 o 5 10 15 * Good (preliminary) results 1072 e ————

projection x, mm projection y, mm

Signal Efficiency
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Al for a self-calibrating detector: GlueX Central Drift Chambers

.............
................

Axial Layers

-
e
e
wantle
''''''

........

+6° Stereo Layers

e
ey
ey
e

oooooooo
Ly .0.0.-'-.-.- .......

ML Technique: Gaussian Process (GP)

Target: Provide traditional Gain Correction Factor (GCF)
* atmospheric pressure within the hall

* temperature within CDC
* CDC high voltage board current

e GP calculates PDF over
admissible functions that fit the
data

y observed data
x y, Mean function estimate
X. new predictions

* GP provides the standard
deviationwe can exploit for
uncertainty quantification(UQ)

*We used a basic GP kernel; Radial
X Basis Function + White

e
et
-

Al in streaming readout data acquisition and real-time inference

Used to detect and track charged particles with momenta
p > 0.25 GeV/c

*|.5 mlong x 1.2 m diameter cylinder

-6° Stereo Layers

* 3522 anode wires at 2125V inside |.6 cm diameter straws
*50:50 Ar/CO2gas mix

Requires two calibrations: chamber gain and drift time-to-
distance

— * Gain Correction Factor (GCF): have most variation +/-15%
* Has one control: operating voltage
It works!
52.5 o
Ll e Tuned HV:[2113-2140]V

50.0- o . HV=2130V

47.5
> ‘o'. %
o PLCL %
S 45.0 o '

‘.0¢ o .'.'...' %o “(“tg‘::i.:"l(..qmg‘C(‘....‘. esto,
42 .5 270 06% g 0at 0 ee eatetengcaqaegte R v‘e'““’. “a;‘.a‘uues‘.‘.«‘«‘-!eee,«a:«ee.e“.e.a=.=.‘!°=‘."==e
40 . O t,.“.“_“ ;.l.(t‘ 0«1:0«««((0,::“"' [ ‘:

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Event Number 1e8

* Half the CDC (orange) at fixed HV, t he other half (blue) had its high voltages
adjusted every 5 minutes

M.Battaglieri - INFN
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Realtime data reduction

o sec of ctreaming DAC Opportunities for real-time Al

but also a challenge

Data reduction represents a main challenge in SRO Online
. P , , , 8 , , Back-end Computing * reliable data reduction
% Traditional DAQ: triggering (+ high level triggering/

. . Exp. Hall [ Timing e applicable at each stages of
reconstruction and compression) reduces data I =7 .
: streaming DAQ
volume FEE FELI SENERN«>
; * Front-end electronics
*Streaming DAQ needs to reduce data real-time: =) LEELA [
: - . FEE ' [FELX oenenl Network * Readout Back-end
zero-suppression, feature building, lossy compression — | & . Onli .
" [FEL Server }+ Storage nline computing
0(10% bidirections! | ST * Data quality monitoring, fast
SR ps . . .
S Aaroom calibration/reconstruction
Front end electronics g e | | B | ] | | || I | | || I | | | | I LI B | | I LI | | I LI -
T
. . e e . . s 8000
Digitization .(ADC,TDC, p|>.<el reac.lout) | O « Waveform digitizer: output
° Data reductlon Strategy to Immedlately aPPIy Zero_suppreSS|on <7000 ................................................................................................................................................................................................................................................... data in ADC time Series

° Real-time AI data I"edUCtiOI’]S: 6000;___ .............. ................. .................................................................................................. __; . NN can be used in the FE
° |mproved Zero_suppression (e.g.sma” Signal recovery) 5000:_ AAAAAAAAAAAAAAAAAAAAA B e —————————————— _: to eXxtract featur'es (eg
. - | - amplitude and time
° Feature bu||d|ng 1 0o ) NS SSRGS (S 1. OSSN S S S— - . P o ) .
. = , , 1 ¢ Fit limited resources in
* Compression S AN DU S N\ | SN — - FEE FPGA or ASIC
* Target hardware: ASIC, (smaller) FPGAsCommon requirement so00F- | | —— 1 ¢ quantized-aware training
of low-power consumption, radiation tolerant SRS RS A -] and pruning
(9] 9]0 S m———— | eveeee e preeenenfeeseeeepreeeeeefresece | S S S ) S
1 0 5 10 15 20 25 30

Sample number

o lei]b] 2 Al in streaming readout data acquisition and real-time inference M.Battaglieri - INFN
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Realtime data reduction

Read out back end

* Data aggregation and flow control
* FPGA as data receiver trough optical link
* Real-time Al data reduction
* Higher-level feature building
* Selection of interesting time slices,
* background/noise rejection
* Target hardware: large-scale FPGAs

Online computing

* Online computing is an integral part of streaming DAQ
* Blending the boundary of online/offline computing

* Real-time Al data reductions

* Lossy compression

* Noise and background filtering

* Higher level reconstruction

* Target hardware: Traditional computing: CPU, GPU (or
new Al-oriented hw)

=
INFN
‘_//

Exp. Hall

FEE

FEE

FEE

FEE
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Al in streaming readout data acquisition and real-time inference
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