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Introducti

* The goal of this talk is to give an overview of Quantum Machine Learning (QML) applications
to High Energy Physics

| am mainly a user from the experimental side, the examples | am going to show may be
biased by my personal view

* QML in HEP is now in an exploration phase, you won’t see any quantum supremacy in this
talk, just the state-of-the-art and prospects

» Given the novelty of the topic in the HEP community, let me first introduce the basic of
quantum computing
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Quantum computing: qubits

\VAS Bloch sphere
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1 Bit: two possible values, 0 0 1 But when we read it we always
1 Qubit: infinite values, one for each point in a sphere =—pp- find 0 or 1!

16/11/2023 Lorenzo Sestini 3 /36



Quantum computing: gate

- Evolution of isolated quantum states described by Operator Gate(s) Matrix
Hamiltonians Pauli-X (X) X- P i
Pauli-Y (Y) —Y - B
 Operations on qubits are unitary matrices . . o
Pauli-Z (Z — Z— =
- The operations are reversible Hodamerd ()  —(H[- vl
Phase (S, P) — S [(1) 0]
- Some classical gates (like OR/AND) cannot be /8 (T) T L
implemented directly .
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Quantum circ

o[8] 6[12]

- Circuits are composed by a sequence of

operations on qubits

«s— * Quantum software is programmed by building
av_  these circuits

x[4], x[5], 0

x[6], x[7], O
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x[8], x[9], 0

* When they are ported to the quantum hardware
they can look very different from the initial design
(transpiling)

Popular python libraries for implementing
Quantum Circuits are Pennylane/Qiskit
In particular Qiskit is used for tests on IBM hardwares

W PENNYLANE £ Qiskit
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Gate-based vs quantum annealing

Quantum annealers

Thermalization

Gate based quantum computers

0[0] 0[4] 0[8] 0[12] 0[16
. Ry Ry Ry Ry
ql o[1] 6[5] 0[9] 0[13] e[17 6
o
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Global Minimum

A" klnd Of taSkS QUBIT CONFIGURATION

https://www.vesselproject.io/life-through-quantum-annealing

Dedicated to optimization problems

D::\.WJauUle

The Quantum Computing Company™
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Quantum computer technc

Quantum Computer Technologies

Natural Qubits

-
s ecteon

Trapped lons

Electrically charged atoms, orions,
are held in place with electric
fields. Qubits are stored in
electronic states. lons are pushed
with laser beams to allow the
qubits to interact.

Qubit Coherence Time (sec)
>1000

Fidelity
99.9%

Qubits Connected
High

Company Support
O IONQ, AQT, Honeywell, Oxford
lonics

Pros
Very stable. Highest achieved gate
fidelities.

Cons
Slow operation. Many lasers are
needed.

Source: Science, Dec. 2016

Neutral Atoms

Neutral atoms, like ions, store
qubits within electronic states.
Laser activates the electrons to

create interaction between qubits.

97%

Very high; low individual control

Atom Computing, ColdQuanta,
QuEra

Many qubits, 2D and maybe 3D.

Hard to program and control
individual qubits; prone to noise.

Photonics

Photonic qubits (light particles) are
sent through a maze of optical
channels on a chip to interact. At
the end of the maze, the
distribution of photons is measured
as an output.

Psiquantum, Xanadu

Linear optical gates, integrated on-
chip.

Each program requires its own chip
with unique optical channels. No
memory.

Synthetic Qubits

Cuerent

—

o

Cacadcitors

=

incl it

Superconducting Loops

A resistance-free current oscillates
back and forth

around a circuit loop. An injected
microwave signal excites the
current into super-position states.

0.00005

99.4%

High

Google, IBM, QCI, Rigetti

Can lay out physical circuits on
chip.

Must be cooled to near absolute
zero. High variability in fabrication.
Lots of noise.

- "'E':'::ﬁd'ﬁfi-
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Silicon Quantum Dots

These "“artificial atoms” are made
by adding an electron to a small
piece of pure silicon. Microwaves
control the electron’s quantum
state.

~99%

Very Low

HRL, Intel, SQC

Borrows from existing
semiconductor industry.

Only a few connected. Must be
cooled to near absolute zero. High
variability in fabrication.
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Topological Qubits
Quasiparticles can be seen in the
behavior of electrons channeled
through semi-conductor structures.
Their braided paths can encode
guantum information.

N/A

N/A

N/A

Microsoft

Greatly reduce errors.

Existence not yet confirmed.
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Diamond Vacancies

A nitrogen atom and a vacancy add
an electron to a diamond lattice. Its
guantum spin state, along with
those of nearby carbon nuclei, can
be controlled with light.

99.2%

Low

Quantum Diamond Technologies

Can operate at room temperature.

Difficult to create high numbers of
qubits, limiting compute capacity.
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Quantum computers

Development Roadmap gﬁefaurtggglw @

2019 @ 2020 @ 2021 @ 2022 @ 2023 2024 2025 2026+
Run quantum circuits Demonstrate and Run quantum Bring dynamic circuits to  Enhancing applications Improve accuracy of Scale quantum functions Increase accuracy and
on the IBM cloud prototype quantum programs 100x faster Qiskit Runtime tounlock  with elastic computing Qiskit Runtime with with circuit knitting speed of quantum
algorithms and with Qiskit Runtime more computations and parallelization of scalable error mitigation toolbox controlling workflows with
applications Qiskit Runtime Qiskit Runtime integration of error
correction into Qiskit
Runtime
Model Prototype quantum software functions @ —>»  Quantum software functions
Developers
Machine learning | Natural science | Optimization
Algorithm Quantum algorithm and application modules . Middleware for Quantum
Developers
Kernel
Developers
OpenQasm 3 Dynamic circuits Threaded primitives @ Error suppression and mitigation Error correction
System Falcon Hummingbird Eagle Osprey Condor Flamingo Kookaburra Scaling to
Modularity 27 qubits 65 qubits 127 qubits 433 qubits 1,121 qubits 1,386+ qubits 4,158+ qubits 10K-100K qubits

with classical
and quantum
communication

Heron @ Crossbill
133 qubits xp 408 qubits
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Quantum computing in HEF

Theory Experiment
l Jet/track Quantum
Real-time reconstruction
Phenomena Quantum VQE/varQITE == Kernels
\<I Dynamics (@ Classification
/ (0)] . 0 QNNS
. Trotter e ol =
- - D namlcs are Slgna :
Low dll-rg_?nsmn y extraction
ij-)" Y_%-) Hybrid Qu-Cl Regression QAOA
| : For & beyond ¢ g,
A TR ﬁ TN/ QTN Srotandgrd L '
Model Quantum
’ Annealin
QLM/D-Theory Optimisation :Z\b"*\ Optimisation .
-loo— varQTE
@) f <3> @ Parton @ AHL
S0 o} Shower Algorithm
T "“'}';'_ Generation
Neutrino Classification ONNSs ¥ e OBMs
oscillations d:[l]]]] ST
Ve < Simulation QCBMs
\vf Quantum SRAA -
. Kernels [y QGANSs
QC4HEP: https://arxiv.org/abs/2307.03236
16/11/2023 Lorenzo Sestini
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https://arxiv.org/abs/2307.03236

Quantum machine learning

Nature Computational Science volume 1, pages 403—-409 (2021)

What could be the possible advantage of QML?

0.8 7 - classical neural network
- easy quantum model
* Runtime speedup, both in training and inference "1 = quantum neural network
— 1bmq montreal backend
. . _ G:,J 0.6
* Representational power: exponential advantage of Hilbert space =
'E_é 0.5
» Explainability: open the black box by measuring entanglement - == N
correlations
0.3 1
 Catch unknown (quantum?) correlations of our data 0ol | Sttt |

number of iterations
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https://www.nature.com/natcomputsci

Quantum machine learning: flow

- Data embedding: map data from classical to qubits

o =g Circuit (or Hamiltonian) definition
Flow similar to

“classical” machine
learning, but each
step has the “quantum

difference” The required output is

Readout: measure the qubit state == usually the probability of

N\
/ measuring 0 (or 1)
v
—

Several measurements
(shots) are necessary

Entanglement correlations, entropy
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QML: data embedding

» Different kinds of embedding are possible, two examples:

o O

o O
S~ S TSN ST

Amplitude
Embedding

X L, repetitions

R(ala 51,’71)

R(a27 527 ’72)

(]
Y

A
J

(02)

%l

R(a3a /837 73)

Amplitude encoder: 2n features in n qubits

) = Z Zi |n;)

exponential compression
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v

1=1

R(aéla 647 74)

\U/I\
U™

o O O O

R.(60y)

X L repetitions

R.(02)

R, (03)

R.(04)

R(as,61,71) D
R(az, B2,72) 449—-

R(as, Bs,7s) b

R(au, Ba,7a) & :

Angle embedding: one rotational gate per

Lorenzo Sestini

v

feature (#features=#qubits)

Polynomial compression
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QML: models

Variational Quantum Circuit Kernel methods
Quantum Classical

5 ey !
: 7 : :_, OUtf’;t : KERNEL METHODS M . SCh U Id QUANTUM COMPUTING
: - [ — _
\ State | : l | : / — / feature space ™\ ﬁ ”inl)(,:t space
! preparation . | | D ) S :
e @ U0 A S e S C e 7)) @ o N ) O
| U(x; 6;) : : l ’ : .j'\"\_ data space Xﬂj - o - . j.\ |'\\ . &L* ‘ o \
: N | /74 : l : | N~ Al,’" - ' — :’\‘l\nput Space_f _’ _\m T ;ccess via
| | ! Update : access via kernel 7 T measurements
: Quantum circuit : : 0i-1 = 6; |
_____________________________ I A

Example: Quantum Neural Networks Example: Quantum Support Vector Machines

Energy based Machine Learning

Network of stochastic binary units, and optimization of its energy

Example: Quantum Boltzmann Machines
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QML: examples in

Tracking Generative

-— Data
particle —— Quantum Circuit Born Machine
y/ tracks e 0.025 A
; », 0.020 -
SANS C Hgu m
lassification
- —e 0.015 -
: 1~ track segment candidates
detector . ROC Curve 0.010 A
layers
particle 1.0
hits )
g 0.005 A
; o 0.8
5
7
o PR 0.000 -
m _ , 1 1 1 1 1 1 L
> 06 Rl 0 10 20 30 40 50 60
e 7
n -’
. . £ ol
Particle Interaction Point 0 0.4 - R
= ’
= Rl —— BDT (AUC = 0.927)
0.2 e —— QAOA (AUC = 0.901)
,/ —— ANGLE (AUC = 0.852)
s — AMPLIT. (AUC = 0.843)
0-0 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
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Tracking




QML: tracking with Quantum Graph Neural |

https://arxiv.org/pdf/2012.01379.pdf

TrackML dataset from CERN : : :
o Quantum-classical hybrid architecture

Kaggle Tracking Machine

Learning challenge

MLP: increase "
iter

- data dimension
E ool Edge Network Node Network Edge Network
T F e Y bl \ — \ - \
800 |+ & >;1\_/I_L_]‘D_: ><> ’L E Sjkhg- :
- (D—HNN—+— |77 (D HNN ——L— 5P+ HNN | >y
600 [ Y ST ) Sk L £ S0 )hﬁ“\" T
: s
“wor Edge network: QNN with Node network: Edges are
200 edges as inputs, and has as weighted with edge features.
- | | | | | | | | outputs probabilities for Triplets of connected nodes
0—3_(1)00 l l—2(|)00l — I—1(I)00l l 0 l l10I00l — '20I00| — '30I00 edges to be true (edge are bUIIt, and fed to a QNN'
2 {mm] features) QNN provides updated
nodes as outputs.
Data are graphs of connected QNN
hits 0) 1 Ry(zo) - 0) l _ _
* Hits are nodes 0) | Ry (1) 0 - _ |
: : , By — I1QC(%;) || PQC(H) || ~~ > (3
» Tracks that connects hits (with Ry} 7 . |feCEI|PQCE) | ~ | &)
geometric constraints) are edges 0) {Ryfin) | e
Embedding

Parametrized quantum
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QML: tracking with Quantum Graph Neural Networks

AUC Comparison after 1 epoch

Different variational guantum circuits architectures are trained 084- .
_ HepTrkX-hid10
HepTrkX-hid5
0.82 1 HepTrkX-hid
TTIN - 12 Qubits MERA - 12 Qubits dMERA-hid1
1By 0 — Ry (10) 0.80 1 rw-hidl
Ry 0}y (01a) : By (O11)— & Ry () |
By (62)|——By (13} —&—Ry (01) Ry (612) v (62) v (030) 0.78 A
Ry (05)] Ry (62) F—¢—Ry (013)
Ry 010}y (0a0) {Ry O} —— TRy (Grs)}—&— Ry () < 0.76-
{Ry (66)——Ry (915) Ry (016)—¢—Ry (024)
Ry (67)} ARy (06) —¢—Ry (617) 0.74 -
Ry (0s)] ARy (07)—4—Ry (615)
‘m_é y (621) y (022) ;RY(es) v (025) y (631) y (032) 0.72 1
Ry (610)—&—Ry (617) Ry (69) Ry (620) v (629) '
y (611) : v (021) JVIPS-hldl
0.70 -
o MPS - 8 Qubits T et
TRy (6) 0.68 -
S o ————————
5 Ry (%) 2’”(0“) # Parameters
v (05)—&—{Ry (06)] ;

............................... v (1) 9—% Comparlson Wlth C|aSSIC8.| GNN after 1 epOCh
QGNN trained on CPU/GPU (long training time)

Trained to obtain the best true-fake tracks separation
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QML: Higgs classific

Classification of t7H(bb) versus the dominant t#bb background » Data from simulation with CMS Delphes

https://arxiv.org/pdf/2104.07692.pdf

» 67 Input features are reduced to 12 (8 In
latent space) with a classical neural
network Auto-encoder

- Two approaches are used for the QML

classification: Quantum Support Vector
Machine, and Variational Quantum Circuit

Variational Quantum Circuit with L layers

0)—— _ _ oamn o -
@— vtz U@F) @ = K = [(0|UT(2,)U(Z;)[0)|? ’?>—Uenc(a?)— Gi(61) U 1Ge(0) Ui Geg1(0er1) B = (0,
0)—— E — 0)—— = — _— - - - .

layer 1 | layer /¢

Kernel: internal product of the
Hilbert space, obtained as
measurement
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1.0

0.8-

O
o

Signal Efficiency (TPR)

0.2

16/11/2023

QML: Higgs classification

Ntrain=576 Ntest=720 (x5)

o
IN

/ —— QSVM (4 qubits): AUC = 0.621 = 0.031
~— SVM rbf: AUC = 0.619 = 0.024
—— QSVM (8 qubits): AUC = 0.620 = 0.032
Random Classifier

e

0.4 0.6 0.8

Background Efficiency (FPR)

0.2

1.0

1.0

0.8-

Signal Efficiency (TPR)

0.2-

0.%.

Lorenzo Sestini

Ntain=3000, N©st=720 (x5)

O
o

O
IN

—— VQC: AUC = 0.6625 + 0.0149
——— RF: AUC = 0.6622 + 0.0153
Random Classifier

0.4 0.6 0.8

Background Efficiency (FPR)

0 0.2

1.0
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QML: Higgs classification

Higgs classification on IBM quantum simulator and quantum hardware (10 qubit)
https://iopscience.iop.org/article/10.1088/1361-6471/ac1391/pdf

RO L T Ty pepepe—— : : : : : - - - - . . ~ - - ~ "
| df"'*':--,, | E | i E i . A R KRS S0 | | : : : : : :
| I NN S Nt v - T (R (NN SN SN ' | memmem—— : : : : : |
il I A S B A o =" S B I S f S S S B
| I "SR S D e o T N N S 5 5 5 ? — - 5 5 f :
08 J ¢ - A R A B R | TN R L e e - i e - s e
c | E s s e 3 b i c z : z | s e ] ; 5
.g o.’.v+—mt———1t 1T v S B F e O NG, CRUISNONS [P PRI VOSSR [SCTITNON, U S acka 51 sk, O SO,
8 E Y"_o ; -t; -.b:
— D0 WA RIESLI, RTINS Eo0: S et SRt MBI AR SETTe RS AR EATHRR | MRS T VAR _\s" __________ l_‘
o 0.6 (‘7{‘\ :’—,0.6 SN SN SO SO SR SURUURN USSR SUUUARS SRRSUR s -
" ' -
Snel P . T [ S T T 1]
= 0.5 r ’\I\L‘k 2 0.5 $------- I T - - - - e o |
O . -
304 : \;\V e 04 } ------------------------------------------------------ L e s aden o oo o o e  N— VISR Sa—S——
~ : o))
8 : § : : u‘},‘ 8 1 I T L e
02+ =-=-- BDT, AUC= 0.83 + 0.06 T R L :\'v‘.— 024 -+ F 4  F 3 1 =
. i E i \ Lol | ' .' ' ' : .' ' : '
O.1 11 ___: r;?,lss(;c;lnst::':::\E;&?ijco;og81 + 0.04 """" ‘\‘l‘ 014" 'IBM Quéntum éimulatbr, AUC‘ = 0-83 ..........................................
- ; ; 4 o = i j ! —— IBM Quantum hardware, AUC = 0.82
0.0 0.1 0.2 0.3 0.4 05 06 0.7 0.8 0.9 1.0 i ' ' ' ' '

0.0 r + : ; ¢ ; : : :
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Signal efficiency Signal efficiency

Trained and evaluated in hardware. Simulator and hardware have a similar performance
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QML: Higgs classification

Nature 550 (2017) 7676, 375-379
Classification of H— yy versus diphoton background ature 5901

by using a programmable quantum annealer . B
— 2 S ffrowemane +
(D-wave, with 1098 qubits) o A
Quantum annealing 0.64- =
H = Z ],'.,‘S,'S-,' + Z h 1S 0.62 -
1,] i O
’4 2 0.60-
i and j are event indexes, Jj and h; are = ,
constructed from dataset and true labels 0.58- ¥ o
— SA
* DNN performs better than QA for large datasets (but 0.56- ~--- DNN
still comparable) XGB
0.54- | | | | | |
» QA achieve the asymptotic performance with a smaller 0.1 1 O 10 15 20
dataset than DNN Size of training dataset (10°)
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QML: b-jet tagging at LHCI

»  Study performed with official LHCb full A total of 16 features relate_d to the jet
simulation substructure are considered

» Classification of b and b jets

» Variational Quantum Circuits with different prj‘?el

types of data embedding are tested

x L repetitions Two datasets/set of features:
0) — o) O] (o.) | |
0) = Amplitude [——{r =5 ‘ - Muon dataset: jets with at
8; I e least one muon, 3 muon

4 features+jet charge
X L repetitions .
- Complete dataset: all jets, 15

8;: = = P particle features+jet charge
0)— = T —ED JHEPO08(2022)014
0)— ®0 Rlaw B0 D
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QML: b-jet tagging at LHCE

0.685
_____ o---0-—-—®-——----0
LHCb simulation 0.68 1 —__,—””.‘__ _____ & 10 -
4= + ----- 4 +/ / LHCb simulation
/+ ____ / LHCb simulation
0.680 - + o 0.6 - /
muon dataset 3 muon dataset 0.8 -
2 / & 0.60 - /
% 0.675 ,// § l,’l
< 7 < /!
H 0.56 - / 2 0.6
/ = ) complete
_ ] ! ¢ o
i S , dataset
/ 0.52 - qq_‘) //
I, ,
+ -@ - Angle Emb. 0'4 i //
0.6651 | | | | _¢-. fnele B sl -#- DNN
I 2 3 4 5 6 7 T
Number of layers Number of training events
0.2 1 DNN (AUC = 0.690 4= 0.001)
* Angle Emb. (AUC = 0.676 + 0.001)
Different number of rotational Compared to a classical Amplitude Emb. (AUC = 0.660 = 0.001)
- 0.0 ! I T T
layers tested: the accuracy DNN, the quantum 0.0 0.2 0.4 0.6 0.8

saturates after few layers

classifier requires less
training events to achieve

mistag

v

The DNN and the quantum circuits
show similar ROC areas

the same accuracy

16/11/2023 Lorenzo Sestini 24 /36



QML: b-jet tagging at LHCb

- The evaluation of the pre-trained quantum circuit for b vs ¢ has been performed on IBM hardware
 b-jet probability: probability to obtain 0 by measuring the output qubit (1000 shots per event)
 For this task the circuit has been implemented using the Qiskit library, (angle embedding is considered)

- The probability distributions show some differences, but the discriminating power is similar

. « | Ibmq_toronto .
200 4 qubit b-jet 4 qubit
50 - -
@ 150 D . c-jet ibmq_toronto 27 qubits
S gasm_simulator S
Lﬁ 100 Lﬁ % 1
20 -
m E
10 -
. | Bachelor thesis
-06 -04 -02 00 0.2 0.4 0.6 04 04 00 02 04 by F. Pra Floriani
b-jet probability b-jet probability

16/11/2023 Lorenzo Sestini 25/36



QML: anomaly detection

- Example of unsupervised QML: new physics is searched as deviation from the Standard Model prediction

» Anomaly detection in dijet events, dataset from CMS Delphes simulation

Features
A”a A¢a Pr

o
(1T
0
# u
2
(11
LHC Collision
¢: X—~>Z
HEP data

Beyond
SM
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DECODER

0: Z—+X

ANOMALY DETECTION

Kernel Machine

Hilbert space

Clustering algorithms
QKmeans / QKmedians

Lorenzo Sestini

—>

https://arxiv.org/abs/2301.10780

PERFORMANCE EVALUATION

(1) ROC curve

FPR

A

p 4
o

>

working

: TPR
point

(2) Quantum VS Classical

A(QCQC)

A

% >

parameters
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QML: anomaly detection

Aqeles) = e, '(es;C)
. o S
Unsupervised kernel machine b ’
T 7 | | | ! | - | | | | | 1 | | | | I | I | I O 3 5 B I I I I I I I B
o0 104 i Anomaly signature —— Quantum _ <C]3 ' —o £€,=0.8
0 —— Narrow G » WW 3.5 TeV ——~. Classical é 06
L — A HZ - 7222 35TeV : &=
— Broad G - WW 1.5 TeV - - _
One of the : ‘ - 3.0
first examples -
‘ - 2.5 -
of quantum :
advantage iIn ‘
HEP 12
i 1.5
10 = \ =
E AUC \Quantum Classical ’ E
- —— 99.54+ 0.05 | 99.34+ 0.06 . 1.01-
[ —— 94.70+0.11|93.29+ 0.13 — ‘
100k — 47.62+ 0.52 | 45.60+ 0.45 - | i |
- | | | | 1 | | | | | | I 1 | | I | | | I B
NEo NE; L=1
0.0 0.2 0.4 0.6 0.8 1.0 o
TPR
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Generative QML




Generative QML: Quantum Born M

https://arxiv.org/pdf/2205.07674.pdf

- Quantum Circuit Born Machines (QCBM) make use of the stochastic 2000+ target
nature of quantum measurements, no classical analogs 1750 T3 classical 5
simulator i
. . - isy simul |
+ Each base element of the quantum space is mapped to a specific PP e ST uy
configuration of the system we want to simulate 1250- | Example:
A 2 2 | Muonic Force
x) = |(x|Y(0 5 1000 - = .
po(T) | (z|1(0)) | 3 109 | Carriers energy
+ As an example if we have N gubits we can simulate a distribution in 2N bins 750- = distribution
500 - .-
- Variational Quantum Circuits are trained to obtain the best compatibility with o _ﬁ_—‘“_
respect to the original dataset. The initial state has a negligible impact. =
oLl
_ ¢
Conditional Born Machines: conditions are given in input to the circuit . = + ~
SRRERRE Giieorassnsineanaatecanhatecatanins £ 10{ et
ﬁ:— Ry (X,) E: T — Ry((0c)) 17 0. P + .
0 10 20 30 40 50
—3 Ry (Xz) E: B — - — R " p(x|y) Energy (GeV)
: QCBM are pretty stable and reliable,
—H Ry (X3) [ — — Ry ((0L)3) B¢ but many qubits are needed for multi-
(B L s s el : dimensional simulations
DATA ENCODIN VARIATIONAL FORM
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Generative QML: qGAN

- Quantum Generative Adversarial Networks: a quantum generator is

. . . . . https://arxiv.org/pdf/2101.11132.pdf
trained against a discriminator (classical or quantum) P 9P P

Calorimeter simulation: energy as a function of the depth (3 bins)

 In general, GAN (not only gGAN) could replace time-consuming program as Full quantum gqGAN
Geant4 . | 15,
—— Generator
. . . ; I Simulation - ---Discriminator
« With gGAN, N qubits can be used to simulate 2N features (NOT 2N & 2 o Target 3
configurations as in Born Machines) % =
1
] g ] ] ] EQH
» The problem is the stability and convergence: it is useful to increase the N : | |
latent space dimension, e.g. adding ancillary qubits o 1 2 0 20 40 60
Calorimeter Depth Epoch
No Measurement
4 ) I ( ) I
0)®N T —— i — Discard ; Hybrld qGAlN
Generator | Discriminator o oid | ' | [
|z ~ N(0,1)), — ) ! \ — (zn) g N, —G.ene%‘at.or
I ’>" - - - Discriminator
O 2t 0.8
9/ B Simulation x |
(a) Fully quantum model. > |~o—Target < :
4 D |X> g Lt 0.6 Hl:
QN _1 , s 2 ]
10) 7 il - Classical
uantum assica ql ; L
Generator )  (x) Discriminator £ ’ 0 1 2 ’ 0 50 100
|z ~ N(0,1)), —— ' L ) Calorimeter depth Epoch

(b) Hybrid model.
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Prospects




Prospects: entanglement and corr

-  Quantum circuits could give us more information on data than classical machine learning by measuring
entanglement entropy

Von Neumann entropy between quantum

. Benchmarkina: the ent | ated with it bipartitions A and B. pais the reduced density
enchmarking: (ne entropy 1S correlated with its matrix of A, obtained by tracing out the degrees of
expressibility and can be used to optimize the circuit: freedom of B

choice of circuit design, embedding scheme, cost
function and data preprocessing S(pa) = —Tr(palog(pa))

- Entanglement-based models: the circuit can be
trained to obtain characteristic wave-functions of the
two categories. Measurement of entanglement
entropy can be used to determine meaningful
quantities, like feature importance and correlations

Definition of bipartition in a 4-qubit circuit
) —} 4 [0) —

0) -

} Az As

0) B}
o | FL|u@ |
0) —} Bs

-, -,

| ve
)

| Hve
)

B,

oo o O

oo O

5

3 3 3

from S. Monaco master thesis
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Prospects: circuit optimi:

When circuits are ported to the hardware, they look very | _
different from the original design: the implementation depends Ibmq_toronto 27 qubits
on the qubit connections, geometry and native gates

The optimization is done with the transpiler

However we should try to perform an accurate circuit design to
improve the timing performance, impact of the noise etc.

We are also studying the impact of noise o+ 11 - - 5
ancilla;; » 12
| || | ||
mitigation techniques v 13 B NN N N N mm e n mm w o w =
2 R e — — k-
llay; + 15
9o —@ 01.3.03 0120'?2032 — qu16—""1—4!‘—':22—1”;":1'_:2_,/1‘_::_Rz_l\z_a-_nz_,,x-_ l}z*_ Rz _vx— Rz
a1 —1 u.g.oo Mz.ogjz.esz Tesln
ZFeatureMap S
g, —2 u U

87,868,689 67.2,88.2,692 —
x[0], x[11, x[2], x{3] 2,682, 69_ ‘_';z" VX th

— — U U — Rz Rz
qs ? 810, 811, 812 810_2, 112,812 2 2024n L 612430

4-qubit angle embedding circuit
I J J Same circuit on the ibmq_toronto hardware
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Prospects: quantum d:

Type of Algorithm

» Treatment of classical data is not yet clear

 Analyze quantum data with QML could lead to a real
advantage (e.g. quantum sensors in the long term)

©
=
0
0
©
@)

Classical Quantum
S. Vallecorsa
Quantum Technologies,

CC | CQ
QQ CSN4&5

Type of Data

Quantum
@,
n

Science VOL. 376, NO. 6598

A Learning physical state C Learnlng physmal process
Quantum-enhanced
R Experiment —— p IO Quantum processing
Quantum Quantum + Measurement
mformatlon memory . . ' . . '
eeeeee Classical pinte = ,Oilkrli/t‘ f
Classical processing | ’
Classical e , e o 111 PN
information _ a Y 010 JF N a
Conventional | £
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https://www.science.org/toc/science/376/6598

Conclusi

- The number of qguantum machine learning applications in HEP is rapidly increasing
- Areal quantum advantage over classical algorithm is not yet established

» We are at the beginning of this R&D, but performance comparable to classical algorithms
are already achievable

- The availability of quantum computers, the number of qubits are currently limitation factors,
simulators are not efficient with a high number of qubits

» The prospects on quantum hardware from the industries look promising

- Many research directions: data embedding, entropy, circuit optimization etc.
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Circuit optimiza

* When circuits are ported to the hardware, they look very | _
different from the original design: the implementation depends Ibmq_toronto 27 qubits
on the qubit connections, geometry and native gates

» The optimization is done with the transpiler

» However we should try to perform an accurate circuit design to
improve the timing performance, impact of the noise etc.

» We are also studying the impact of noise
mitigation techniques

qo — 0

61,82,83 612,622,632

g1 —1
ZFeatureMap

g —2
x[01, x{11, x[2], x{3]

84,85, 66 842,

2c ®c 8c

67,68,089 672,682,692

—_— — U U — Rz Rz
as 3 810, 811, 812 810.2,811 2,812 2 #024n il 01243

4-qubit angle embedding circuit
I J J Same circuit on the ibmq_toronto hardware
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Prospects: timing performai

Circuit depth = maximum number of gates applied to the same qubit
- We have measured the job time on IBM Circuit Volume: depth*number of effectively used qubits

hardware

58

0.
0.56

- The queue time should be already subtracted 1024 shots

ibmq_toronto 27 qubit
ibm_oslo 7 qubit

» There is a dependence of the time from .

the Circuit Volume 0.52

Time/event [s]

0.5
- However we have several questions: how

this time is divided in quantum and
classical operations? How much time is
needed for data upload?

0.48
0.46
0.44

0.42
» An accurate analysis and comparison with

simulations can help in scaling the
performance to larger Circuit Volumes

0.4

0.38

II|III|III| ll|lll|lll|lll|lll|lll|Illllllll

l | 1 1 l
400 600 800 1000 1200

Circuit volume

b —
—
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Tracking at LHCDb

https://arxiv.org/pdf/2308.00619.pdf
Vertex detector tracking at LHCDb

1 1

I m I 7‘((8) =_§ZAijSiSj+ZbiSi =—§STAS+bTS,

A-side i,] i
xI_Z) ||H ‘ H”HH”HH ‘ | | || 66 mm S, 1 1f the doublet 1s part of a track
;=

IR N . 0 otherwise

C-side
YL Ising Hamiltonian: the minimum
X IS the solution of tracking problem

Probably not machine learning in

the strict sense, because we are

minimizing a Hamiltonian and not
a loss function

It is necessary to solve a N x N
linear system of equations, with
N number of doublets
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Tracking at LHCD

100————— —

. L S| R E

HHL quantum algorithm for solving linear problems - " Track-finding efficiency -

T “

98- k- N
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0 2 ; :

nq > S E,’>3 S O - -

0) = = = ; :

+2 +> - )

0)—H— & & SN ol ;

ny ) : % % 4@ % & f Integrated fake rate: 4.3% -
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O> H — A 10 10

Momentum p (MeV)

Other studies on tracking (LUXE): https://arxiv.org/pdf/2308.00619.pdf
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QML: b-jet tagc¢

» We take profit of the Particle Identification
capabilities of LHCDb

A total of 16 features are conside_red to
distinguish jets produced by b and b quarks

RN
» For each identified type of particle (muon, z A ‘
electron, kaon, pion, proton) we select the N ol
one with the higher transverse momentum AT PT
. We consider three observables per particle: | / /-~
Per p Two datasets/set of features:
- AR (distance in n-¢ space) Ty
between the partlcle ¢ i % )Z * |V|u0n dataset: jetS with at
momentum and the jet axis least one muon, 3 muon
Y features+jet charge
+ p1'e with respect to jet axis
- Complete dataset: all jets, 15
» Charge (+1 or -1) particle features+jet charge
rel
» We include also the jet charge: @ = 2:(PT )it
> (P

16/11/2023
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QML: b-jet tagging at LH

A requirement is applied on the probability s PR
output to maximize the tagging power | LHCb simulation + DN
(combination of efficiency, e, and accuracy, a): __ N

€tag = Eeff(2a — 1)2

|
2500 | D jet
LHCDb simulation _
I b jet
|
mplet
2000 - compiete |
dataset |
|
|
o 1500- ,
5 |
O
>
M I
1000 - |
i Wl
+—>
|
500 - |
I
|
0 ,II‘ : I ! |
0.0 0.2 0.4 0.6 0.8 1.0
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L

T i muon dataset

i

€tag (70)

i# !

154 17 4 | *
? T
| ¢
oS- o @ @O OO OO OO OO OO OO
20 40 60 80 100
pt (GeV/c)

In the muon dataset, the
DNN and the Angle
Embedding circuit have a
similar performance

Lorenzo Sestini

14 -
13 LHCDb simulation i ;/[I:I(i? Tag
12-5 ¢+ Angle Emb.
1 Amplitude Emb.
o T
9 -
= 7 Stas
S 61 ¢
5
;‘ complete dataset
2
1 e o
T 4w e s 10

pr (GeV/c)

v

In the complete dataset, the
Angle Embedding shows a
lower tagging power than the
DNN (2% absolute difference)
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QML: b-jet tagging-Quantum

» Several noise models have been
applied to the simulator in order to study

its impact

»  With the noise, a higher number of
training epochs is necessary to

achieve the best accuracy

»  With a sufficiently high number of
epochs, the accuracy obtained with
the noise is of the same order of the
accuracy obtained without noise

16/11/2023
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Classification of b- vs c-jets

% tracks b jet * For this task, features related to the
reconstructed Secondary Vertex (SV),
------ b hadron formed by particle tracks and matched with
______ impact the jet, are used
parameter _
» Most important features:
secondary . SV mass
vertex
do » SV corrected mass
hghtjet

- primary vertex

» Fraction of jet momentum taken by the SV
\ - Delta R distance of SV with respect to jet axis

lghtjet

* From 4 to 13 features are used
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o O

QAOA
Embedding

o O
S~ S SN SN

A

Quantum Approximate Optimization Algorithm encoding (QAOA),
a variational circuit for the embedding

QAOA Test Accuracy

VRGNl 0.7667 0.798 0.8078 0.816

9 10 11 12 13

Nyl 0.7855 0.806

8

WGz 0.7619 0.794

qubits
7

WRYwl 0.7875 0.7997 0.805

6

| / "‘:»’_: 'g"‘ 0.7902

0.7654

0.7482 0.7616‘ 0.7626 0.7676

=l 0.5812 0.6859 0.6792 0.677 0.6784

1 2 3 4 5
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0.7652 0.7886 0.8028 0.8087 0.8173
RN 0.7649 0.7895 0.8083 0.8143 0.8168
NG 0.7808 0.7863 0.8057 0.8083 0.8199
0.8192
RGN 0.7663 0.7972 0.8081 0.8109 0.8183
0.8121 0.8128 0.8217
0.8108 0.8169 0.8145
0.8139 0.8177
/578 0.7885 0.7971 0.8031 0.8024
0.7938 0.7948 0.7963
0.7901 0.7899 0.7983 0.7962

0.763

0.8246
0.8211
0.8152
0.8187
0.819
0.824
0.8171
0.8193
0.7964
0.8005
0.798
0.7702

0.8291
0.8275
0.8222
0.8202
0.8231
0.8255
0.8185
0.8212
0.8011
0.8023
0.8015
0.7679

R, (1) PRt HP Raten)
R, (0s)

- Rl K Re0s)

LR, (a4)

0.8286 0.8291

0.8266 0.8281

0.8205 0.8225

0.8233 0.8227

0.8199 0.8235

0.8192 0.8261

0.8143 0.8182

0.8199 0.8212

0.8015 0.8041

0.8008 0.8041

0.8023 0.8029

0.7695
0.6855

9 10

0.771

(02)

True Positive Rate

Several tests have
been performed by
varying the number of
features (=#qubits) and
the number of layers

<

Master thesis by

C. Cocha

Lorenzo Sestini

Classification of b- vs c-jet

ROC Curve
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False Positive Rate

With the QAOA algorithm the
performance is close to the one
obtained with a classical BDT
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Prospects: entropy and correlatio

Quantum circuits could give us more information on data than classical machine learning, by measuring
entanglement correlations and entropy between qubits (features)

A proof of principle on the b vs b task at LHCb has been given in (npj Quantum Inf 7, 111 (2021)), for a
guantum-inspired method: the entropy and correlations have been used to determine a ranking of the

features

The same side Kaon algorithm has been re-discovered
Could the quantum entropy and correlation ! 10 S \
give us a deeper insight on data? . I
Could be useful to measure these O S 5 05 0
quantities on real data? Could they be = n 0.0
used to improve our simulation? & O ieamach |

& U M - 0.5 0.2 )
A more general question: do we have 13 O I |
quantum data in our experiments? - semn-mm 0 _,
1 5 9 13 | 1
Features Features

16/11/2023 Lorenzo Sestini 47 /36



