Quantum machine learning and its applications to HEP

Lorenzo Sestini INFN Padova

Fifth edition of the Machine Learning @ INFN advanced level hackathon - Pisa- 16/11/2023

Istituto Nazionale di Fisica Nucleare

Introduction

16/11/2023 Lorenzo Sestini 2/36

- The goal of this talk is to give an overview of **Quantum Machine Learning (QML)** applications to High Energy Physics
- **I am mainly a user from the experimental side**, the examples I am going to show may be biased by my personal view
- QML in HEP is now in an exploration phase, **you won't see any quantum supremacy in this talk**, just the state-of-the-art and prospects
- Given the novelty of the topic in the HEP community, let me first **introduce the basic of quantum computing**

1 Bit: two possible values, 0 o 1 **1 Qubit:** infinite values, one for each point in a sphere \longrightarrow

16/11/2023 Lorenzo Sestini 3/36

Quantum computing: qubits

But when we read it we always find 0 or 1!

Quantum computing: gates

- Evolution of isolated quantum states described by **Hamiltonians**
- Operations on qubits are unitary matrices
- **• The operations are reversible**
- Some classical gates (like OR/AND) cannot be implemented directly

$$
H(t)|\psi(t)\rangle=i\hbar\frac{\partial}{\partial t}|\psi(t)\rangle
$$

 $UU^{\dagger} = U^{\dagger}U = I$ $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} a\alpha + b\beta \\ c\alpha + d\beta \end{pmatrix}$

x[14], x[15], 0

Quantum circuits

- Circuits are composed by a sequence of operations on qubits
- Quantum software is programmed by building these circuits
- When they are ported to the quantum hardware they can look very different from the initial design (**transpiling**)

Popular python libraries for implementing Quantum Circuits are Pennylane/Qiskit In particular **Qiskit** is used for tests on IBM hardwares

Gate-based vs quantum annealing

Gate based quantum computers

Quantum annealers

QUBIT CONFIGURATION

All kind of tasks

16/11/2023 Lorenzo Sestini 6/36

Dedicated to optimization problems

https://www.vesselproject.io/life-through-quantum-annealing

Quantum computer technologies

Quantum Computer Technologies

Natural Qubits

Synthetic Qubits

Source: Science, Dec. 2016

16/11/2023 Lorenzo Sestini 7/36

Quantum computers

Quantum computing in HEP

QC4HEP:<https://arxiv.org/abs/2307.03236>

Theory Experiment

16/11/2023 Lorenzo Sestini 9/36

What could be the possible advantage of QML? *[Nature Computational Science](https://www.nature.com/natcomputsci) volume 1. pages 403–409 (2021)* **4. Aproper Construct And Actual Actual Actual network**

Quantum machine learning

16/11/2023 Lorenzo Sestini 10/36

- Runtime speedup, both in training and inference
- Representational power: exponential advantage of Hilbert space
- Explainability: open the black box by measuring entanglement correlations
- Catch unknown (quantum?) correlations of our data

Quantum machine learning: flow

Flow similar to "classical" machine learning, but each step has the "quantum difference"

16/11/2023 Lorenzo Sestini 11/36

Data preparation Model definition **Training Testing** Interpretation Data embedding: map data from classical to qubits Circuit (or Hamiltonian) definition **Readout:** measure the qubit state \rightarrow The required output is usually the probability of measuring 0 (or 1) Several measurements (**shots**) are necessary Entanglement correlations, entropy

QML: data embedding

• Different kinds of embedding are possible, two examples:

Amplitude encoder: **2n** features in **n** qubits **Angle embedding**: one rotational gate per

$$
|x\rangle = \sum_{i=1}^{2^n} x_i |n_i\rangle
$$
 exponential compress

feature (#features=#qubits)

exponential compression

Variational Quantum Circuit Kernel methods

QML: models

Example: Quantum Neural Networks Example: Quantum Support Vector Machines

16/11/2023 Lorenzo Sestini

Energy based Machine Learning

Example: Quantum Boltzmann Machines

Network of stochastic binary units, and optimization of its energy

QML: examples in HEP

Tracking

16/11/2023 Lorenzo Sestini

Classification

ROC Curve

Generative

Tracking

QML: tracking with Quantum Graph Neural Networks

https://arxiv.org/pdf/2012.01379.pdf

Edge network: QNN with edges as inputs, and has as outputs probabilities for edges to be true (edge features)

Node network: Edges are weighted with edge features. Triplets of connected nodes are built, and fed to a QNN. QNN provides updated nodes as outputs.

Quantum-classical hybrid architecture

Data are graphs of connected hits

- Hits are **nodes**
- Tracks that connects hits (with geometric constraints) are **edges**

QML: tracking with Quantum Graph Neural Networks

Comparison with classical GNN after 1 epoch. QGNN trained on CPU/GPU (long training time)

16/11/2023 Lorenzo Sestini 17/36

Different variational quantum circuits architectures are trained

Trained to obtain the best true-fake tracks separation

Classification

Classification of $t\bar{t}H(b\bar{b})$ versus the dominant $t\bar{t}b\bar{b}$ background

9 000000 g 000000

https://arxiv.org/pdf/2104.07692.pdf

- Data from simulation with CMS Delphes
- 67 input features are reduced to 12 (8 in latent space) with a classical neural network Auto-encoder
- Two approaches are used for the QML classification: Quantum Support Vector Machine, and Variational Quantum Circuit

Quantum Support Vector Machine Variational Quantum Circuit with L layers

16/11/2023 Lorenzo Sestini 19/36

Kernel: internal product of the Hilbert space, obtained as measurement

16/11/2023 Lorenzo Sestini 21/36

https://iopscience.iop.org/article/10.1088/1361-6471/ac1391/pdf

Higgs classification on IBM quantum simulator and quantum hardware (10 qubit)

Trained and evaluated in hardware. Simulator and hardware have a similar performance

Nature 550 (2017) 7676, 375-379

16/11/2023 Lorenzo Sestini 22/36

i and j are event indexes, J_{ij} and h_i are constructed from dataset and true labels

Quantum annealing

$$
H = \sum_{i,j} J_{ij} s_i s_j + \sum_i h_i s_i
$$

Classification of $H \rightarrow \gamma \gamma$ versus diphoton background by using a **programmable quantum annealer**

- DNN performs better than QA for large datasets (but still comparable)
- QA achieve the asymptotic performance with a smaller dataset than DNN

(D-wave, with 1098 qubits)

 ΔR

- Study performed with official LHCb full simulation
- Classification of b and \bar{b} jets
- Variational Quantum Circuits with **different types of data embedding** are tested

Two datasets/set of features:

- **Muon dataset**: jets with at least one muon, 3 muon features+jet charge
- **Complete dataset**: all jets, 15 particle features+jet charge

16/11/2023 Lorenzo Sestini 23/36

 $p_{\rm T}^{\rm rel}$

 \boldsymbol{z}

 x_{\perp}

-
-
-
-

• The evaluation of the pre-trained quantum circuit for b vs c has been performed on IBM hardware • b-jet probability: probability to obtain 0 by measuring the output qubit (1000 shots per event) • For this task the circuit has been implemented using the **Qiskit** library, (angle embedding is considered) **• The probability distributions show some differences, but the discriminating power is similar**

-
- Anomaly detection in dijet events, dataset from CMS Delphes simulation **https://arxiv.org/abs/2301.10780**

QML: anomaly detection

• **Example of unsupervised QML**: new physics is searched as deviation from the Standard Model prediction

16/11/2023 Lorenzo Sestini 26/36

Unsupervised kernel machine

QML: anomaly detection

16/11/2023 Lorenzo Sestini 27/36

Generative QML

Generative QML: Quantum Born Machines

- **Quantum Circuit Born Machines (QCBM)** make use of the stochastic nature of quantum measurements, no classical analogs
- Each base element of the quantum space is mapped to a specific configuration of the system we want to simulate
- As an example if we have N qubits we can simulate a distribution in 2^N bins
- Variational Quantum Circuits are trained to obtain the best compatibility with respect to the original dataset. **The initial state has a negligible impact**.

QCBM are pretty stable and reliable, but many qubits are needed for multidimensional simulations

Conditional Born Machines: conditions are given in input to the circuit

 $p_{\theta}(x) = |\langle x | \psi(\theta) \rangle|^2$

$$
\stackrel{\overline{\lhd}}{=} \ p(x|y)
$$

Carriers energy

Generative QML: qGAN

30/36

16/11/2023 Lorenzo Sestini 20/36

- trained against a discriminator (classical or quantum)
- Geant4
- With qGAN, N qubits can be used to simulate 2^N features (NOT 2^N configurations as in Born Machines)
- latent space dimension, e.g. adding ancillary qubits

Prospects: entanglement and correlations

• **Quantum circuits could give us more information on data than classical machine learning** by measuring

- **entanglement entropy**
- **Benchmarking:** the entropy is correlated with its expressibility and can be used to **optimize the circuit**: choice of circuit design, embedding scheme, cost function and data preprocessing
- **Entanglement-based models**: the circuit can be trained to obtain characteristic wave-functions of the two categories. **Measurement of entanglement entropy can be used to determine meaningful quantities**, **like feature importance and correlations**

Von Neumann entropy between quantum bipartitions A and B. p_A is the reduced density matrix of A, obtained by tracing out the degrees of freedom of B

$$
S(\rho_A) = -\text{Tr}(\rho_A \log(\rho_A))
$$

16/11/2023 Lorenzo Sestini 22/36

Prospects: circuit optimization

- **When circuits are ported to the hardware, they look very different from the original design**: the implementation depends on the qubit connections, geometry and native gates
- The optimization is done with the **transpiler**
- However we should try to perform an accurate circuit design to improve the **timing performance, impact of the noise** etc.
- We are also studying the impact of **noise mitigation techniques**

4-qubit angle embedding circuit Same circuit on the ibmq_toronto hardware

16/11/2023 Lorenzo Sestini

ibmq_toronto 27 qubits

Prospects: quantum data

- Treatment of classical data is not yet clear
- Analyze quantum data with QML could lead to a real advantage (e.g. quantum sensors in the long term)

Science [VOL. 376, NO. 6598](https://www.science.org/toc/science/376/6598)

16/11/2023 Lorenzo Sestini 24/36

Conclusions

- The number of quantum machine learning applications in HEP is rapidly increasing
- **• A real quantum advantage over classical algorithm is not yet established**
- We are at the beginning of this R&D, but **performance comparable to classical algorithms are already achievable**
- The availability of quantum computers, the number of qubits are currently limitation factors, simulators are not efficient with a high number of qubits
- The prospects on quantum hardware from the industries look promising
- **Many research directions**: data embedding, entropy, circuit optimization etc.

Thanks for your attention!

Study partially funded by ICSC - Centro Nazionale di ricerca in High Performance Computing, Big Data e Quantum Computing Spoke 10 - Quantum Computing

Circuit optimization

- **When circuits are ported to the hardware, they look very different from the original design**: the implementation depends on the qubit connections, geometry and native gates
- The optimization is done with the **transpiler**
- However we should try to perform an accurate circuit design to improve the **timing performance, impact of the noise** etc.
- We are also studying the impact of **noise mitigation techniques**

4-qubit angle embedding circuit Same circuit on the ibmq_toronto hardware

16/11/2023 Lorenzo Sestini

ibmq_toronto 27 qubits

Prospects: timing performance

- We have measured the **job time on IBM hardware**
- The queue time should be already subtracted
- There is a **dependence of the time from the Circuit Volume**
- However we have several questions: **how this time is divided in quantum and classical operations? How much time is needed for data upload?**
- An accurate analysis and comparison with simulations can help in **scaling the performance to larger Circuit Volumes**

Tracking at LHCb

$$
\mathcal{H}(\mathbf{S}) = -\frac{1}{2} \sum_{i,j} A_{ij} S_i S_j + \sum_i b_i S_i = -\frac{1}{2} \mathbf{S}^{\mathrm{T}} A \mathbf{S} + \mathbf{b}^{\mathrm{T}} \mathbf{S},
$$

$$
S_i = \begin{cases} 1 & \text{if the doublet is part of a track} \\ 0 & \text{otherwise} \end{cases}
$$

https://arxiv.org/pdf/2308.00619.pdf

Vertex detector tracking at LHCb

Ising Hamiltonian: the minimum is the solution of tracking problem

It is necessary to solve a N x N linear system of equations, with N number of doublets

HHL quantum algorithm for solving linear problems

Tracking at LHCb

Other studies on tracking (LUXE): https://arxiv.org/pdf/2308.00619.pdf

16/11/2023 Lorenzo Sestini 41/36

QML: b-jet tagging

- We take profit of the **Particle Identification** capabilities of LHCb
- For each identified type of particle (**muon,** $x\prime$ **electron, kaon, pion, proton**) we select the one with the higher transverse momentum
- We consider **three observables per particle**:
	- ΔR (distance in η-φ space) between the particle momentum and the jet axis
	- p_T ^{rel} with respect to jet axis
	- Charge $(+1 \text{ or } -1)$
- We include also the jet charge: $Q = \frac{\sum_i (p_{\text{T}}^{\text{rel}})_{i} q_i}{\sum_{i=1}^{N} q_i}$

Two datasets/set of features:

- **Muon dataset**: jets with at least one muon, 3 muon features+jet charge
- **Complete dataset**: all jets, 15 particle features+jet charge

16/11/2023 Lorenzo Sestini 42/36

A total of 16 features are considered to distinguish jets produced by b and b̅ quarks

A requirement is applied on the probability output to maximize the **tagging power** (combination of efficiency, ε*eff*, and accuracy, *a*):

 $\epsilon_{\text{tar}} = \epsilon_{\text{eff}} (2a-1)^2$

In the *muon dataset*, the DNN and the Angle Embedding circuit have a **similar performance**

In the *complete dataset*, the **Angle Embedding shows a lower tagging power than the DNN** (2% absolute difference)

Muon Tag. $13[°]$ LHCb simulation **DNN** 12 Angle Emb. 11 Amplitude Emb. 10 $\epsilon_{\rm tag}$ $(\%)$ 100 20 40 60 80 $p_{\rm T}$ (GeV/c)

\n $\frac{2500}{2000}$ \n	\n LHCb simulation\n $\frac{1}{b \text{ jet}}$ \n	\n $\frac{1}{b \text{ jet}}$ \n	\n $\frac{1}{c}$																																			
---------------------------	--	---------------------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	---------------------	------------------

QML: b-jet tagging-Quantum noise

- Several **noise models** have been applied to the simulator in order to study its impact
- With the noise, **a higher number of training epochs is necessary to achieve the best accuracy**
- With a sufficiently high number of epochs, **the accuracy obtained with the noise is of the same order of the accuracy obtained without noise**

16/11/2023 Lorenzo Sestini 44/36

Classification of b- vs c-jets

16/11/2023 Lorenzo Sestini 45/36

- For this task, features related to the reconstructed **Secondary Vertex (SV)**, formed by particle tracks and matched with the jet, are used
- Most important features:
	- SV mass
	- SV corrected mass
	- Fraction of jet momentum taken by the SV
	- Delta R distance of SV with respect to jet axis

• From 4 to 13 features are used

0.7652 0.7886 0.8028 0.8087 0.8173 0.8246 0.8291 0.8286 0.8291 0.7649 0.7895 0.8083 0.8143 0.8168 0.8211 0.8275 0.8266 0.8281 0.7808 0.7863 0.8057 0.8083 0.8199 0.8152 0.8222 0.8205 0.8225 qubits
 $\begin{bmatrix} 7 & 8 \\ 1 & 1 \end{bmatrix}$ 0.7578 0.7885 0.7971 0.8031 0.8024 0.7964 0.8011 0.8015 0.8041 \rightarrow -0.7415 0.7555 0.7902 0.7938 0.7948 0.7963 0.8005 0.8023 0.8008 0.8041 - 0.7178 0.7654 0.7901 0.7899 0.7983 0.7962 0.798 0.8015 0.8023 0.8029 \sim - 0.6192 | 0.7482 | 0.7616 | 0.7626 | 0.7676 | 0.763 | 0.7702 | 0.7679 | 0.7695 | 0.771 $-$ 0.5812 0.6859 0.6792 0.677 0.6784 0.679 0.6858 0.6782 0.6855 0.6856 $\overline{2}$

46/36

16/11/2023 Lorenzo Sestini 46/36

Prospects: entropy and correlations

• **Quantum circuits could give us more information on data than classical machine learning**, by measuring

- **entanglement correlations and entropy** between qubits (features)
- A proof of principle on the b vs \bar{b} task at LHCb has been given in (npj Quantum Inf 7, 111 (2021)), for a **features**

quantum-inspired method: **the entropy and correlations have been used to determine a ranking of the**

16/11/2023 Lorenzo Sestini 47/36

- Could the quantum entropy and correlation give us a deeper insight on data?
- Could be useful to measure these quantities on real data? **Could they be used to improve our simulation**?
- A more general question: **do we have quantum data in our experiments**?

