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Introduction
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• The goal of this talk is to give an overview of Quantum Machine Learning (QML) applications 
to High Energy Physics

• I am mainly a user from the experimental side, the examples I am going to show may be 
biased by my personal view

• QML in HEP is now in an exploration phase, you won’t see any quantum supremacy in this 
talk, just the state-of-the-art and prospects

• Given the novelty of the topic in the HEP community, let me first introduce the basic of 
quantum computing
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Quantum computing: qubits
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Bloch sphere

1 Bit: two possible values, 0 o 1
1 Qubit: infinite values, one for each point in a sphere

But when we read it we always 
find 0 or 1!



/36Lorenzo Sestini16/11/2023

Quantum computing: gates
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• Evolution of isolated quantum states described by 
Hamiltonians

• Operations on qubits are unitary matrices

• The operations are reversible

• Some classical gates (like OR/AND) cannot be 
implemented directly 
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Quantum circuits
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• Circuits are composed by a sequence of 
operations on qubits

• Quantum software is programmed by building 
these circuits

• When they are ported to the quantum hardware 
they can look very different from the initial design 
(transpiling)

Popular python libraries for implementing 
Quantum Circuits are Pennylane/Qiskit 
In particular Qiskit is used for tests on IBM hardwares
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Gate-based vs quantum annealing
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Gate based quantum computers

Quantum annealers

All kind of tasks

Dedicated to optimization problems
https://www.vesselproject.io/life-through-quantum-annealing



/36Lorenzo Sestini16/11/2023

Quantum computer technologies
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Quantum computers
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Quantum computing in HEP
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QC4HEP: https://arxiv.org/abs/2307.03236

Theory Experiment

https://arxiv.org/abs/2307.03236
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Quantum machine learning
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What could be the possible advantage of QML? Nature Computational Science volume 1, pages 403–409 (2021)

• Runtime speedup, both in training and inference

• Representational power: exponential advantage of Hilbert space

• Explainability: open the black box by measuring entanglement 
correlations

• Catch unknown (quantum?) correlations of our data 

https://www.nature.com/natcomputsci
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Quantum machine learning: flow
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Data 
preparation

Model 
definition

Training

Testing

Interpretation

Data embedding: map data from classical to qubits

Flow similar to 
“classical” machine 
learning, but each 

step has the “quantum 
difference”

Circuit (or Hamiltonian) definition

Readout: measure the qubit state 
The required output is 

usually the probability of 
measuring 0 (or 1)

Several measurements 
(shots) are necessary

Entanglement correlations, entropy
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QML: data embedding

• Different kinds of embedding are possible, two examples:
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Amplitude encoder: 2n features in n qubits Angle embedding: one rotational gate per 
feature (#features=#qubits)

exponential compression Polynomial compression
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QML: models
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Variational Quantum Circuit Kernel methods

M. Schuld

Example: Quantum Neural Networks Example: Quantum Support Vector Machines

Energy based Machine Learning

Example: Quantum Boltzmann Machines

Network of stochastic binary units, and optimization of its energy 
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QML: examples in HEP
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Tracking

Classification

Generative



Tracking
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QML: tracking with Quantum Graph Neural Networks
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https://arxiv.org/pdf/2012.01379.pdf

MLP: increase 
data dimension

Edge network: QNN with 
edges as inputs, and has as 

outputs probabilities for 
edges to be true (edge 

features)

Node network: Edges are 
weighted with edge features. 
Triplets of connected nodes 
are built, and fed to a QNN. 

QNN provides updated 
nodes as outputs.

Quantum-classical hybrid architecture

Data are graphs of connected 
hits
• Hits are nodes
• Tracks that connects hits (with 

geometric constraints) are edges

TrackML dataset from CERN 
Kaggle Tracking Machine 
Learning challenge

Embedding Parametrized quantum 
circuit

QNN
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QML: tracking with Quantum Graph Neural Networks
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Comparison with classical GNN after 1 epoch.
QGNN trained on CPU/GPU (long training time)

Different variational quantum circuits architectures are trained

Trained to obtain the best true-fake tracks separation



Classification



/36Lorenzo Sestini16/11/2023

QML: Higgs classification
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https://arxiv.org/pdf/2104.07692.pdf

• Data from simulation with CMS Delphes

• 67 input features are reduced to 12 (8 in 
latent space) with a classical neural 
network Auto-encoder

• Two approaches are used for the QML 
classification: Quantum Support Vector 
Machine, and Variational Quantum Circuit

Quantum Support Vector Machine Variational Quantum Circuit with L layers

Kernel: internal product of the 
Hilbert space, obtained as 

measurement
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QML: Higgs classification

20
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QML: Higgs classification
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https://iopscience.iop.org/article/10.1088/1361-6471/ac1391/pdf

Higgs classification on IBM quantum simulator and quantum hardware (10 qubit)

Trained and evaluated in hardware. Simulator and hardware have a similar performance
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QML: Higgs classification
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Nature 550 (2017) 7676, 375-379

Quantum annealing

i and j are event indexes, Jij and hi are 
constructed from dataset and true labels

• DNN performs better than QA for large datasets (but 
still comparable)

• QA achieve the asymptotic performance with a smaller 
dataset than DNN

Classification of H → γγ versus diphoton background
by using a programmable quantum annealer 

(D-wave, with 1098 qubits)
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QML: b-jet tagging at LHCb
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• Study performed with official LHCb full 
simulation

• Classification of b and b ̅jets

• Variational Quantum Circuits with different 
types of data embedding are tested

Two datasets/set of features:

• Muon dataset: jets with at 
least one muon, 3 muon 
features+jet charge

• Complete dataset: all jets, 15 
particle features+jet charge

A total of 16 features related to the jet 
substructure are considered

JHEP08(2022)014
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QML: b-jet tagging at LHCb
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Compared to a classical 
DNN, the quantum 

classifier requires less 
training events to achieve 

the same accuracy The DNN and the quantum circuits 
show similar ROC areas

Different number of rotational 
layers tested: the accuracy 
saturates after few layers

complete 
dataset

muon dataset muon dataset
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QML: b-jet tagging at LHCb
• The evaluation of the pre-trained quantum circuit for b vs c has been performed on IBM hardware

• b-jet probability: probability to obtain 0 by measuring the output qubit  (1000 shots per event)

• For this task the circuit has been implemented using the Qiskit library, (angle embedding is considered)

• The probability distributions show some differences, but the discriminating power is similar

25
b-jet probabilityb-jet probability

Ev
en

ts

Ev
en

ts

b-jet
c-jet

ibmq_toronto

qasm_simulator

4 qubit 4 qubit

ibmq_toronto 27 qubits

Bachelor thesis 
by F. Pra Floriani
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QML: anomaly detection
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• Example of unsupervised QML:  new physics is searched as deviation from the Standard Model prediction

• Anomaly detection in dijet events, dataset from CMS Delphes simulation https://arxiv.org/abs/2301.10780
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QML: anomaly detection
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One of the 
first examples 

of quantum 
advantage in 

HEP



Generative QML
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Generative QML: Quantum Born Machines
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https://arxiv.org/pdf/2205.07674.pdf
• Quantum Circuit Born Machines (QCBM) make use of the stochastic 

nature of quantum measurements, no classical analogs

• Each base element of the quantum space is mapped to a specific 
configuration of the system we want to simulate

• As an example if we have N qubits we can simulate a distribution in 2N bins

• Variational Quantum Circuits are trained to obtain the best compatibility with 
respect to the original dataset. The initial state has a negligible impact.

QCBM are pretty stable and reliable, 
but many qubits are needed for multi-
dimensional simulations

Conditional Born Machines: conditions are given in input to the circuit

Example: 
Muonic Force 
Carriers energy 
distribution
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Generative QML: qGAN
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https://arxiv.org/pdf/2101.11132.pdf• Quantum Generative Adversarial Networks: a quantum generator is 
trained against a discriminator (classical or quantum)

• In general, GAN (not only qGAN) could replace time-consuming program as 
Geant4

• With qGAN, N qubits can be used to simulate 2N features (NOT 2N 

configurations as in Born Machines)

• The problem is the stability and convergence: it is useful to increase the 
latent space dimension, e.g. adding ancillary qubits

Calorimeter simulation: energy as a function of the depth (3 bins)

Full quantum qGAN

Hybrid qGAN



Prospects
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Prospects: entanglement and correlations
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• Quantum circuits could give us more information on data than classical machine learning by measuring 
entanglement entropy

• Benchmarking: the entropy is correlated with its 
expressibility and can be used to optimize the circuit: 
choice of circuit design, embedding scheme, cost 
function and data preprocessing

• Entanglement-based models: the circuit can be 
trained to obtain characteristic wave-functions of the 
two categories. Measurement of entanglement 
entropy can be used to determine meaningful 
quantities, like feature importance and correlations

Definition of bipartition in a 4-qubit circuit 

Von Neumann entropy between quantum 
bipartitions A and B. ρA is the reduced density 

matrix of A, obtained by tracing out the degrees of 
freedom of B 

from S. Monaco master thesis
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Prospects: circuit optimization
• When circuits are ported to the hardware, they look very 

different from the original design: the implementation depends 
on the qubit connections, geometry and native gates

• The optimization is done with the transpiler

• However we should try to perform an accurate circuit design to 
improve the timing performance, impact of the noise etc.

33

4-qubit angle embedding circuit
Same circuit on the ibmq_toronto hardware

ibmq_toronto 27 qubits

• We are also studying the impact of noise 
mitigation techniques 
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Prospects: quantum data

34

• Treatment of classical data is not yet clear

• Analyze quantum data with QML could lead to a real 
advantage (e.g. quantum sensors in the long term)

Science VOL. 376, NO. 6598

S. Vallecorsa
Quantum Technologies, 

Workshop INFN 
CSN4&5

https://www.science.org/toc/science/376/6598
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Conclusions
• The number of quantum machine learning applications in HEP is rapidly increasing 
• A real quantum advantage over classical algorithm is not yet established
• We are at the beginning of this R&D, but performance comparable to classical algorithms 

are already achievable
• The availability of quantum computers, the number of qubits are currently limitation factors, 

simulators are not efficient with a high number of qubits
• The prospects on quantum hardware from the industries look promising
• Many research directions: data embedding, entropy, circuit optimization etc.

35



Thanks for your attention!
Study partially funded by 

ICSC - Centro Nazionale di ricerca in High Performance Computing, Big Data e Quantum Computing 
Spoke 10 - Quantum Computing
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Circuit optimization
• When circuits are ported to the hardware, they look very 

different from the original design: the implementation depends 
on the qubit connections, geometry and native gates

• The optimization is done with the transpiler

• However we should try to perform an accurate circuit design to 
improve the timing performance, impact of the noise etc.

38

4-qubit angle embedding circuit
Same circuit on the ibmq_toronto hardware

ibmq_toronto 27 qubits

• We are also studying the impact of noise 
mitigation techniques 
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Prospects: timing performance

• We have measured the job time on IBM 
hardware 

• The queue time should be already subtracted

• There is a dependence of the time from 
the Circuit Volume 

• However we have several questions: how 
this time is divided in quantum and 
classical operations? How much time is 
needed for data upload?

• An accurate analysis and comparison with 
simulations can help in scaling the 
performance to larger Circuit Volumes  

39

Circuit depth = maximum number of gates applied to the same qubit
Circuit Volume: depth*number of effectively used qubits
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Tracking at LHCb
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https://arxiv.org/pdf/2308.00619.pdf

Vertex detector tracking at LHCb

Ising Hamiltonian: the minimum 
is the solution of tracking problem

Probably not machine learning in 
the strict sense, because we are 
minimizing a Hamiltonian and not 

a loss function 

It is necessary to solve a N x N 
linear system of equations, with 

N number of doublets
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Tracking at LHCb
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https://arxiv.org/pdf/2308.00619.pdfOther studies on tracking (LUXE):

HHL quantum algorithm for solving linear problems
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QML: b-jet tagging
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• We include also the jet charge:

• We take profit of the Particle Identification 
capabilities of LHCb

• For each identified type of particle (muon, 
electron, kaon, pion, proton) we select the 
one with the higher transverse momentum

• We consider three observables per particle:

• ΔR (distance in η-φ space) 
between the particle 
momentum and the jet axis

• pTrel with respect to jet axis

• Charge (+1 or -1)

Two datasets/set of features:

• Muon dataset: jets with at 
least one muon, 3 muon 
features+jet charge

• Complete dataset: all jets, 15 
particle features+jet charge

A total of 16 features are considered to 
distinguish jets produced by b and b̅ quarks
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QML: b-jet tagging at LHCb
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A requirement is applied on the probability 
output to maximize the tagging power 

(combination of efficiency, εeff, and accuracy, a):

In the muon dataset, the 
DNN and the Angle 

Embedding circuit have a 
similar performance

In the complete dataset, the 
Angle Embedding shows a 

lower tagging power than the 
DNN (2% absolute difference)

muon dataset

complete datasetcomplete 
dataset
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QML: b-jet tagging-Quantum noise

• Several noise models have been 
applied to the simulator in order to study 
its impact

• With the noise, a higher number of 
training epochs is necessary to 
achieve the best accuracy

• With a sufficiently high number of 
epochs, the accuracy obtained with 
the noise is of the same order of the 
accuracy obtained without noise

44
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Classification of b- vs c-jets
• For this task, features related to the 

reconstructed Secondary Vertex (SV), 
formed by particle tracks and matched with 
the jet, are used


• Most important features:


• From 4 to 13 features are used

45

• SV mass


• SV corrected mass


• Fraction of jet momentum taken by the SV


• Delta R distance of SV with respect to jet axis
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Classification of b- vs c-jets

46

Quantum Approximate Optimization Algorithm encoding (QAOA), 
a variational circuit for the embedding 

Several tests have 
been performed by 
varying the number of 
features (=#qubits) and 
the number of layers With the QAOA algorithm the 

performance is close to the one 
obtained with a classical BDT

Master thesis by 
C. Cocha
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Prospects: entropy and correlations
• Quantum circuits could give us more information on data than classical machine learning, by measuring 

entanglement correlations and entropy between qubits (features)

• A proof of principle on the b vs b ̅task at LHCb has been given in (npj Quantum Inf 7, 111 (2021)), for a 
quantum-inspired method: the entropy and correlations have been used to determine a ranking of the 
features

47

• Could the quantum entropy and correlation 
give us a deeper insight on data?

• Could be useful to measure these 
quantities on real data? Could they be 
used to improve our simulation?

• A more general question: do we have 
quantum data in our experiments?

The same side Kaon algorithm has been re-discovered


