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ATTENTION AND TRANSFORMERS
• The attention mechanism (Bhdanau et al, arXiv:1409.0473, 2014) has been proposed to help memorize long source 

sentences in neural machine translation tasks


• ideally a context vector used to store the learned internal representation of the input should contains information 
from the entire input, but this scales poorly with the input size: either the size of the context vector grows making 
the problem computationally hard, or one must accept a degradation in performance


• attention idea: replace the static elements of the context vector with shortcuts between the context vector and the 
entire source input, with shortcuts weights that dynamically adapt for each output element


• intuition: even if the model may need to draw upon information from the entire input, however some parts of it will 
be more relevant than others for the specific task. The attention mechanism provides a way to identify such parts …


• Transformers (Vaswani et al, arXiv:1706.03762, 2017) are recent DL architectures based on the attention mechanism 
that have gradually replaced RNNs in mainstream NLP tasks, and compete/surpass (when (pre)trained with large 
datasets) other neural architectures in vision or in time-domain related tasks


• facilitate the learning of long range sequences 


• don’t need recurrence → no gradient vanishing or explosion problems


• needs fewer training steps and can be easily parallelised on GPUs → computationally efficient
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https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1706.03762


h⃗n = fw(hn−1, xn) = [v0, v1, ⋯, vd]

EXAMPLE: CONTEXT VECTOR LENGHT ISSUE IN SEQ2SEQ
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encoder

decoder

seq2seq models (used in machine translation tasks): transforms an input sequence to a new one 
(both of arbitrary lengths)

• encoder-decoder architecture:


• encoder: processes the input sequence and compresses 
the information into a context vector of a fixed length:  
(summary of the meaning of the whole source sequence)


• decoder: initialised with the context vector to emit the 
transformed output

h⃗N

becomes ineffective for long sequence, unless 
implemented in complex StackedRNN 

architectures that are hard/impossible to train in an 
acceptable timex = [x1, ⋯, xn]

y = [y1, ⋯, yk]

p(yi |{y1, ⋯, yi−1}) = gw(yi−1, Si−1)



ATTENTION
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Ci = ∑
j

αijhjcontext vector for the output i:

αij = softmax(alignment(yi, xj)) =
exp[alignment(si−1, hj)]

∑k exp[alignment(si−1, hk)]
alignment weight between 
output  and the input yi xj

guarantees a 

convex combination

αij ≥ 0; ∑
j

αij = 1

a suitable alignment function: 

ex. inner product: alignment(si, hj) = sT

i hj

• intuitive idea: 


• attention is, to some extent, motivated by how we correlate words in one sentence or pay visual attention to 
different regions of an image


• when we see “eating”, we expect to encounter a food word very soon.  The color term describes the food, but 
probably not so much with “eating” directly


• the attention mechanism forms a representation of the entire input, but different parts of it are weighted differently 
according to the task at hand. By making the weights a learnable component, the network can learn to attend only 
to the relevant parts of the input 



t
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decoder

encoder

input

output

hidden states

hidden states

convex combination Ct = ∑
j

αtjhj

p(yt |{y1, ⋯, yt−1}) = gw(yt−1, st−1, Ct)



RNNSearch: BIDIRECTIONAL RNN WITH ATTENTION
• attention idea implemented for the first time in a model (RNNSearch: D. Bahdanau, K. Cho and Y. Bengio, ICLR 

2015) which made a breakthrough in machine translation by combining a bi-directional RNN with an additive 
attention mechanism
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attention weights in a seq-to-seq problem of translation from ENG to FR

alignment(yi, xj) = U tanh(Wsi−1 + W̃hj + bi) learnable weights
U, W, W̃, bi



ATTENTION MECHANISM AS A DB RETRIEVAL TECHNIQUE 
• the attention mechanism can be also described in a different way, as a technique that 

mimics the retrieval in a database of a value v based on a query q and on a key k 

• in a database retrieval process the query is used to identify a key that allows to 
retrieve a given value associated to that key:
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key1     value1
key2     value2 
key3     value3

keyN     valueN 

query: aligns with 
one of the keys

database

the key is aligned 
with one of the 
values of the 
database and 

produce in output 
that value



• the dotted attention mechanism mimics this via a neural network architecture:
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a way to measure how similar 
(“aligned’) are q and ki

attention(q, k, v) = ∑
i

similarity(q ⋅ ki) × vi

the value associated to the 
key ki

• in a traditional db the query returns one value, and this corresponds to use a similarity 
function that produce a one-hot encoding [0,0,0,…,1,0,…,0] that effectively return just one 
value vk


• the dotted attention generalise that by using a distribution, e.g. weights ∈ [0,1] that sum up to 1 
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λi = f(q, ki) =
qTki

qTki

dk

(WqqTWkki)/ dk

Wqq + Wkki

dot-product attention

scaled dot-product attention

general att.

additive  (as in the RNNSearch)

project q and k on new spaces (to be in the same similarity-
space with the key) via a learnable transformation

much more efficient than 
additive similarity

different possibilities for the similarity measure

• Cross Attention: allows to compare each output with a context vector that takes into account all the input elements

• query i: hidden representation vector for the i-th output element: si

• key j: hidden representation vector for the j-th input element: hj 

• value j: again the hidden representation vector for the j-th input element: hj


• Self Attention: relates different positions of a single sequence in order to compute a representation of the same sequence)

• query i: hidden representation vector for the i-th input element: hi

• key j: hidden representation vector for the j-th input element: hj 

• value j: again the hidden representation vector for the j-th input element: hj

similarity 
measures

⇒ αi =
eλi

∑j eλj
⇒ Attention scores(v) = ∑

i

αivi



ATTENTION SCORES VS WEIGHTS IN FULLY CONNECTED LAYERS
• attention mechanisms allows to attend to different parts of a sequence, this sounds very similar to a fully connected 

layer in a MLP, but with an important advantage:


• in a fully-connected layers weight are fixed after training, so are static wrt the input


• in the attention instead, the weights are dynamic and input dependent (the computation involves the comparison of 
each input element to each other)


• this allow a neural network to selectively weight the importance of different input features
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Dense 
layer


weights
Attention 
scores

credit: S. Raschka



SCALED DOT-PRODUCT ATTENTION VISUALIZED

11credit: S. Raschka

2nd x2

q2

2nd and itself

scale of the keys to prevent too large o small dot-prod -> softmax ~0 or 1 ->small gradients 



TRANSFORMER  
ARCHITECTURE

• A. Vaswani et al. “Attention is All You 
Need” (2017) arXiv:1706.03762 


• Encoder-decoder architecture for 
sequence analysis fully based on 
attention w/o recurrence 


• today has substantially replaced any 
other DNN model in NLP tasks
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decoder

encoder

https://arxiv.org/abs/1706.03762
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decoder:

looks at the correlations from 

the output words and between 
them and the encoded input to 

produce the translated text

encoder:

generates a self-attention based 

representation with capability to locate 
specific piece of information from a large 

context

input is the entire 
sequence of words


(not one by one like in a 
RNN)

stack of N modules, each 
one made by a multi-head 
self-attention layer and a 
point-wise dense feed-
forward net

positional encoding: 
allows the sentence not 
to be treated as a bag of 

words

output: probability over the words/
tokens dictionary (the higher prob. 

word/token is chosen

masked self attention layer 
that combines output words 
with previous output words


(teacher forcing)

x-attention layer that combines 
output words embedding with 

input words embeddings



WORD EMBEDDING (I.E. LEARN REPRESENTATIONS OF WORDS)
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to be understood by a NN a text must be vectorized + represented effectively

two main techniques typically used: 

doesn’t scale well with the dictionary dimension … scale well with dimensionality

(1,0,0)
(0,1,0)

(0,0,1)

example:

a 3 words 

dictionary 

(x1,y1,z1)

(x2,y2,z2)

(x3,y3,z3)

•  simple

•  naive approach, no similarity information


•  more complex, more powerful

•  takes into account words similarity

•  dense vectors can be learned with a NN



WORD EMBEDDING: WORD2VEC METHOD

15

Word2Vec (Mikolov (Google) 2013) is one of the most popular word embedding techniques

a DNN is trained to associate a vector of real numbers to each word, so that words with similar or related meanings in some 
way are associated with "similar" vectors


- example: take a sentence as input and try to predict the probabilities that a target word is associated with the other words 
of the analysed sentence


- the high-level representations learnt by the network are used as embedding for the target word 



• because the self-attention operation is permutation invariant, positional encoding is used to provide order information to the model when 
needed (ex. text or time sequences)


• implemented by adding a positional vector , with same dimension as the input embedding, directly to te input embedding: 

• two positional encoding typically considered in vanilla transformers: 


• Sinuisoidal PE: in which small constant values are added to the embeddings (has shown to provide very good performance):


• Learnable PE: assigns each element of  with a learned vector which encodes its absolute position (ex. ) 

E X → X + E

E E(p) = fw[Esin(p)]

POSITIONAL ENCODING
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as a result, same words will have slightly different embeddings depending on where the  
occur in the sentence …

X ∈ RL×d =
x(0,0) x(0,1) x(0,2) x(0,3) x(0,d)

x(L,0) x(L,d)

0
1
⋮

L

0 1 2 3 d

E ∈ RL×d =
0 1 0 1 1

sin(ω0) cos(ω0) sin(ω1) cos(ω1) cos(ω(d-1)/2)

sin(Lω0) cos(Lω0) sin(Lω1) cos(Lω1) cos(Lω(d-1)/2)

0
1
⋮

L

E(p,2i) = sin(p × ωi) = sin ( p
100002i/d )

E(pos,2i + 1) = cos ( pos
100002i/d )

word position in the input sequence embedding ∈ [0,L/2)

hidden dimension i ∈ [0,d/2)

X → X + E
⋯



MULTI HEAD (SELF) ATTENTION
• it is the core of the Transformer architecture, the structure is the same of the attention layer we have just discussed
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• NOTE: in the transformer N of these multi head attention blocks are organised in stacks, the first one capture correlations between 
pair of words/tokens, second between pair of pair of words/tokens, and so on so that eventually all the words in the sentence will 
be combined together …

for each one a scaled dot-
product attention is computed

and finally all of them are concatenated before to 
apply a final projection 

Qi = XWq,i Ki = XWk,i Vi = XWv,i

hi(Qi, Ki, Vi) = softmax ( QiKT
i

dk ) Vi

concat[h1, h2, …, hh]

MultiHead(Q, K, V ) = concat[h1, h2, …, hh]W0

to increase the expressive power, in a way similar to the 
convolution filters in a CNN, multiple sets {i=1,…,h} of 

keys, querys, and values are computed

concat

linear

ValuesKeysQueries

linear linearlinear linear linearlinear linear linearlinear

scaled dot product attention scaled dot product attentionscaled dot product attention

h: # of heads

h



MASKED MH ATTENTION
• is a masked version of the MHA layer in which some values are masked to prevent them to 

be selected


• in the decoder the first MHA correlates output words with previous output words (a given 
output cannot depends on future outputs), so future outputs should be masked
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H(Q, K, V) = softmax ( QKT

dk ) V

Masked H(Q, K, V) = softmax ( QiKT + M

d ) V

with M a mask matrix with 

zero’s for unmasked 
elements and -∞ for 
masked elements 


(exp(-∞) = 0)



LAYER NORMALIZATION
• normalize values in each layer to have 0 mean and 1 variance to reduce covariate shifts (eg gradient 

correlations/dependences between each layer), making training much faster and stable


• for each hidden unit  substitute  with  with  a “gain” hyper parameter that compensate for the 
fact that we are normalising:


• is very similar to a batch normalisation layer, with the difference that here the normalisation is done at the level 
of the layer (normalising across hidden units) while in BN it is done for each units normalising across batch 
elements. This is done in order to be insensitive to small batch sizes

h h γ(h − μ)/σ γ
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μ =
1
H

H

∑
i=1

hi σ =
1
H

H

∑
i=1

(hi − μ)2

N: batch dim



TRANSFORMERS EVOLUTION IN LLMs
• the original transformer has spawn series of evolutions that today dominate LLMs

• three directions explored:  

20https://github.com/Mooler0410/LLMsPracticalGuide

BART (META), T5, UL@, …
GPT3.5/Chat-GPT, GPT4, 
LLaMA (META), LaMDA 

(Google), Galactica, Bard 
(Google)…

BERT (META), RoBERTa, 
distiBERT, …

https://github.com/Mooler0410/LLMsPracticalGuide


BERT
• BERT (2019), 340M parameters: unsupervised bi-directional encoder transformer 

that predicts a missing word based on surrounding words by computing  
P(xt|x1,…,xt-1,xt+1,…,xN) or the next sentence based on a previous sentence
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BERT: can be considered as a bidirectional transformer:

 

randomly mask one or multiple words in the sentence, 

the associated context is passed to a softmax classifier 
that produce the probability of classifying the correct 

missing word  



GPT
• GPT is an unidirectional, autoregressive model, approach at the core of most influential 

LLMs


• it works by predicting the next token given a sequence of tokens (so outputs one token at a 
time at difference of BART)


• GPT3/3.5/4: latest incarnations: trained on a huge Internet text datasets (~600 GB for 
GPT3), and scaled up in terms of parameters wrt older version (GPT4: 8x220b pars = 1.76t 
pars)


• most impressive feature: it’s a meta-learner, eg it has learned to learn, you can ask it in 
natural language to perform a new task and it “understands” what it has to do, mimicking 
how humans would (of course in much more rudimental way)


• very popular variant: ChatGPT, smaller version specifically designed for chatbot 
applications (eg. to generate natural-sounding responses in conversations. Trained on a 
large dataset of conversational text, that allows it to insert appropriate context-specific 
responses in conversations, making it more effective at maintaining a coherent conversation 


• one of the reasons behind ChatGPT’s impressive performance is its training  
technique: reinforcement learning from human feedback (RLHF)
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RLHF
• reinforcement learning from human feedback consists in three 

phases:


1. pre-train the LLM model with self-supervision (ex. fine-tuning of 
GPT3.5)


2. create a reward model for the RL system: train a second model 
(based on a LLM model) that takes in the text generated by the 
main model and produces a quality score (labels are produced 
by humans)


3. create a reinforcement learning loop. A copy of the main LLM 
becomes the RL agent. In each training episode, the LLM takes 
several prompts from a training dataset and generates text. Its 
output is then passed to the reward model, which provides a 
score that evaluates its alignment with human preferences. The 
LLM is then updated to create outputs that score higher on the 
reward model
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VISION TRANSFORMER
• the very same philosophy of the transformer architecture can be applied to vision, signal analysis, point-cloud analysis, etc. 

tasks


• Vision Transformer (ViT): proposed in 2021 by A. Dosovitsky et al. in arXiv:2010.11929 


• Simple idea:


• split the images into patches


• vectorise the patches into flat vectors


• add positional encodings vectors to preserve  
patch positions in the original image


• feed the embedding to a transformer  
encoder tailored for a classification task

24

https://arxiv.org/abs/2010.11929


IMAGE PATCHING AND VECTORISATION
• patches can overlap or not (the original paper uses not overlapping patches)
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• ViT has much less image-specific inductive bias than CNNs 


• in CNNs, locality, two-dimensional neighbourhood structure, and translation equivariance, are baked into each layer 
throughout the whole model 


• in ViT, only MLP layers are local and translationally equivariant, while the self-attention layers are global. The 2D 
neighborhood structure is only used when cutting the image into patches while the position embeddings is only 1D and 
the 2D spatial relations between the patches have to be learned. Consequently, ViTs require more data for pretraining 
to acquire useful "priors" from the training data

d × d × cD × D × c

d2c

LIN
EAR +

positional

embedding

1 2 3

4 5 6

7 8 9

TRAN
SFO

RM
ER



SEGMENTATION WITH ViT
• SAM: Segment Anything by Meta
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a promptable segmentation system with zero-shot generalisation to unfamiliar objects and images (eg w/o fine-
tuning/retraining)

- image encoder (based on pre-trained ViT) + prompt encoder (Transformer) + mask decoder (Transformer) system

(arXiv:2304.02643)

• UNetr (and Swin UNetr): algorithm by NVIDIA
(H. Hatamizadeh et al.: UNetr)

it is basically a mix between a 3D ViT and an UNet architecture

- the transformer encoder learns sequence representations of the input volume

- the encoder is directly connected to a decoder via skip connections at different 

resolutions like a U-Net to compute the final semantic segmentation output

https://arxiv.org/pdf/2304.02643.pdf
https://openaccess.thecvf.com/content/WACV2022/papers/Hatamizadeh_UNETR_Transformers_for_3D_Medical_Image_Segmentation_WACV_2022_paper.pdf


MULTI-MODALITY TRANSFORMERS 

27credits: S. Scardapane



KEEP IN TOUCH …
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