
INFN Pisa - 14.11.2023

QUICK INTRODUCTION TO  
- TRANSFORMERS -
S. Giagu - 5th ML_INFN Hackathon: Advanced Level

ATTENTION AND TRANSFORMERS
• The attention mechanism (Bhdanau et al, arXiv:1409.0473, 2014) has been proposed to help memorize long source

sentences in neural machine translation tasks

• ideally a context vector used to store the learned internal representation of the input should contains information
from the entire input, but this scales poorly with the input size: either the size of the context vector grows making
the problem computationally hard, or one must accept a degradation in performance

• attention idea: replace the static elements of the context vector with shortcuts between the context vector and the
entire source input, with shortcuts weights that dynamically adapt for each output element

• intuition: even if the model may need to draw upon information from the entire input, however some parts of it will
be more relevant than others for the specific task. The attention mechanism provides a way to identify such parts …

• Transformers (Vaswani et al, arXiv:1706.03762, 2017) are recent DL architectures based on the attention mechanism
that have gradually replaced RNNs in mainstream NLP tasks, and compete/surpass (when (pre)trained with large
datasets) other neural architectures in vision or in time-domain related tasks

• facilitate the learning of long range sequences

• don’t need recurrence → no gradient vanishing or explosion problems

• needs fewer training steps and can be easily parallelised on GPUs → computationally efficient
2

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1706.03762

h⃗n = fw(hn−1, xn) = [v0, v1, ⋯, vd]

EXAMPLE: CONTEXT VECTOR LENGHT ISSUE IN SEQ2SEQ

3

encoder

decoder

seq2seq models (used in machine translation tasks): transforms an input sequence to a new one
(both of arbitrary lengths)

• encoder-decoder architecture:

• encoder: processes the input sequence and compresses
the information into a context vector of a fixed length:
(summary of the meaning of the whole source sequence)

• decoder: initialised with the context vector to emit the
transformed output

h⃗N

becomes ineffective for long sequence, unless
implemented in complex StackedRNN

architectures that are hard/impossible to train in an
acceptable timex = [x1, ⋯, xn]

y = [y1, ⋯, yk]

p(yi |{y1, ⋯, yi−1}) = gw(yi−1, Si−1)

ATTENTION

4

Ci = ∑
j

αijhjcontext vector for the output i:

αij = softmax(alignment(yi, xj)) =
exp[alignment(si−1, hj)]

∑k exp[alignment(si−1, hk)]
alignment weight between
output and the input yi xj

guarantees a

convex combination

αij ≥ 0; ∑
j

αij = 1

a suitable alignment function:

ex. inner product: alignment(si, hj) = sT

i hj

• intuitive idea:

• attention is, to some extent, motivated by how we correlate words in one sentence or pay visual attention to
different regions of an image

• when we see “eating”, we expect to encounter a food word very soon. The color term describes the food, but
probably not so much with “eating” directly

• the attention mechanism forms a representation of the entire input, but different parts of it are weighted differently
according to the task at hand. By making the weights a learnable component, the network can learn to attend only
to the relevant parts of the input

t

5

⊕αt,0

αt,1 αt,t

αt,n

decoder

encoder

input

output

hidden states

hidden states

convex combination Ct = ∑
j

αtjhj

p(yt |{y1, ⋯, yt−1}) = gw(yt−1, st−1, Ct)

RNNSearch: BIDIRECTIONAL RNN WITH ATTENTION
• attention idea implemented for the first time in a model (RNNSearch: D. Bahdanau, K. Cho and Y. Bengio, ICLR

2015) which made a breakthrough in machine translation by combining a bi-directional RNN with an additive
attention mechanism

6

attention weights in a seq-to-seq problem of translation from ENG to FR

alignment(yi, xj) = U tanh(Wsi−1 + W̃hj + bi) learnable weights
U, W, W̃, bi

ATTENTION MECHANISM AS A DB RETRIEVAL TECHNIQUE
• the attention mechanism can be also described in a different way, as a technique that

mimics the retrieval in a database of a value v based on a query q and on a key k

• in a database retrieval process the query is used to identify a key that allows to
retrieve a given value associated to that key:

7

key1 value1
key2 value2
key3 value3

keyN valueN

query: aligns with
one of the keys

database

the key is aligned
with one of the
values of the
database and

produce in output
that value

• the dotted attention mechanism mimics this via a neural network architecture:

8

a way to measure how similar
(“aligned’) are q and ki

attention(q, k, v) = ∑
i

similarity(q ⋅ ki) × vi

the value associated to the
key ki

• in a traditional db the query returns one value, and this corresponds to use a similarity
function that produce a one-hot encoding [0,0,0,…,1,0,…,0] that effectively return just one
value vk

• the dotted attention generalise that by using a distribution, e.g. weights ∈ [0,1] that sum up to 1

9

λi = f(q, ki) =
qTki

qTki

dk

(WqqTWkki)/ dk

Wqq + Wkki

dot-product attention

scaled dot-product attention

general att.

additive (as in the RNNSearch)

project q and k on new spaces (to be in the same similarity-
space with the key) via a learnable transformation

much more efficient than
additive similarity

different possibilities for the similarity measure

• Cross Attention: allows to compare each output with a context vector that takes into account all the input elements

• query i: hidden representation vector for the i-th output element: si

• key j: hidden representation vector for the j-th input element: hj

• value j: again the hidden representation vector for the j-th input element: hj

• Self Attention: relates different positions of a single sequence in order to compute a representation of the same sequence)

• query i: hidden representation vector for the i-th input element: hi

• key j: hidden representation vector for the j-th input element: hj

• value j: again the hidden representation vector for the j-th input element: hj

similarity
measures

⇒ αi =
eλi

∑j eλj
⇒ Attention scores(v) = ∑

i

αivi

ATTENTION SCORES VS WEIGHTS IN FULLY CONNECTED LAYERS
• attention mechanisms allows to attend to different parts of a sequence, this sounds very similar to a fully connected

layer in a MLP, but with an important advantage:

• in a fully-connected layers weight are fixed after training, so are static wrt the input

• in the attention instead, the weights are dynamic and input dependent (the computation involves the comparison of
each input element to each other)

• this allow a neural network to selectively weight the importance of different input features

10

Dense
layer

weights
Attention
scores

credit: S. Raschka

SCALED DOT-PRODUCT ATTENTION VISUALIZED

11credit: S. Raschka

2nd x2

q2

2nd and itself

scale of the keys to prevent too large o small dot-prod -> softmax ~0 or 1 ->small gradients

TRANSFORMER  
ARCHITECTURE

• A. Vaswani et al. “Attention is All You
Need” (2017) arXiv:1706.03762

• Encoder-decoder architecture for
sequence analysis fully based on
attention w/o recurrence

• today has substantially replaced any
other DNN model in NLP tasks

12

decoder

encoder

https://arxiv.org/abs/1706.03762

13

decoder:

looks at the correlations from

the output words and between
them and the encoded input to

produce the translated text

encoder:

generates a self-attention based

representation with capability to locate
specific piece of information from a large

context

input is the entire
sequence of words

(not one by one like in a
RNN)

stack of N modules, each
one made by a multi-head
self-attention layer and a
point-wise dense feed-
forward net

positional encoding:
allows the sentence not
to be treated as a bag of

words

output: probability over the words/
tokens dictionary (the higher prob.

word/token is chosen

masked self attention layer
that combines output words
with previous output words

(teacher forcing)

x-attention layer that combines
output words embedding with

input words embeddings

WORD EMBEDDING (I.E. LEARN REPRESENTATIONS OF WORDS)

14

to be understood by a NN a text must be vectorized + represented effectively

two main techniques typically used:

doesn’t scale well with the dictionary dimension … scale well with dimensionality

(1,0,0)
(0,1,0)

(0,0,1)

example:

a 3 words

dictionary

(x1,y1,z1)

(x2,y2,z2)

(x3,y3,z3)

• simple

• naive approach, no similarity information

• more complex, more powerful

• takes into account words similarity

• dense vectors can be learned with a NN

WORD EMBEDDING: WORD2VEC METHOD

15

Word2Vec (Mikolov (Google) 2013) is one of the most popular word embedding techniques

a DNN is trained to associate a vector of real numbers to each word, so that words with similar or related meanings in some
way are associated with "similar" vectors

- example: take a sentence as input and try to predict the probabilities that a target word is associated with the other words
of the analysed sentence

- the high-level representations learnt by the network are used as embedding for the target word

• because the self-attention operation is permutation invariant, positional encoding is used to provide order information to the model when
needed (ex. text or time sequences)

• implemented by adding a positional vector , with same dimension as the input embedding, directly to te input embedding:

• two positional encoding typically considered in vanilla transformers:

• Sinuisoidal PE: in which small constant values are added to the embeddings (has shown to provide very good performance):

• Learnable PE: assigns each element of with a learned vector which encodes its absolute position (ex.)

E X → X + E

E E(p) = fw[Esin(p)]

POSITIONAL ENCODING

16

as a result, same words will have slightly different embeddings depending on where the  
occur in the sentence …

X ∈ RL×d =
x(0,0) x(0,1) x(0,2) x(0,3) x(0,d)

x(L,0) x(L,d)

0
1
⋮

L

0 1 2 3 d

E ∈ RL×d =
0 1 0 1 1

sin(ω0) cos(ω0) sin(ω1) cos(ω1) cos(ω(d-1)/2)

sin(Lω0) cos(Lω0) sin(Lω1) cos(Lω1) cos(Lω(d-1)/2)

0
1
⋮

L

E(p,2i) = sin(p × ωi) = sin (p
100002i/d)

E(pos,2i + 1) = cos (pos
100002i/d)

word position in the input sequence embedding ∈ [0,L/2)

hidden dimension i ∈ [0,d/2)

X → X + E
⋯

MULTI HEAD (SELF) ATTENTION
• it is the core of the Transformer architecture, the structure is the same of the attention layer we have just discussed

17

• NOTE: in the transformer N of these multi head attention blocks are organised in stacks, the first one capture correlations between
pair of words/tokens, second between pair of pair of words/tokens, and so on so that eventually all the words in the sentence will
be combined together …

for each one a scaled dot-
product attention is computed

and finally all of them are concatenated before to
apply a final projection

Qi = XWq,i Ki = XWk,i Vi = XWv,i

hi(Qi, Ki, Vi) = softmax (QiKT
i

dk) Vi

concat[h1, h2, …, hh]

MultiHead(Q, K, V) = concat[h1, h2, …, hh]W0

to increase the expressive power, in a way similar to the
convolution filters in a CNN, multiple sets {i=1,…,h} of

keys, querys, and values are computed

concat

linear

ValuesKeysQueries

linear linearlinear linear linearlinear linear linearlinear

scaled dot product attention scaled dot product attentionscaled dot product attention

h: # of heads

h

MASKED MH ATTENTION
• is a masked version of the MHA layer in which some values are masked to prevent them to

be selected

• in the decoder the first MHA correlates output words with previous output words (a given
output cannot depends on future outputs), so future outputs should be masked

18

H(Q, K, V) = softmax (QKT

dk) V

Masked H(Q, K, V) = softmax (QiKT + M

d) V

with M a mask matrix with

zero’s for unmasked
elements and -∞ for
masked elements

(exp(-∞) = 0)

LAYER NORMALIZATION
• normalize values in each layer to have 0 mean and 1 variance to reduce covariate shifts (eg gradient

correlations/dependences between each layer), making training much faster and stable

• for each hidden unit substitute with with a “gain” hyper parameter that compensate for the
fact that we are normalising:

• is very similar to a batch normalisation layer, with the difference that here the normalisation is done at the level
of the layer (normalising across hidden units) while in BN it is done for each units normalising across batch
elements. This is done in order to be insensitive to small batch sizes

h h γ(h − μ)/σ γ

19

μ =
1
H

H

∑
i=1

hi σ =
1
H

H

∑
i=1

(hi − μ)2

N: batch dim

TRANSFORMERS EVOLUTION IN LLMs
• the original transformer has spawn series of evolutions that today dominate LLMs

• three directions explored:

20https://github.com/Mooler0410/LLMsPracticalGuide

BART (META), T5, UL@, …
GPT3.5/Chat-GPT, GPT4,
LLaMA (META), LaMDA

(Google), Galactica, Bard
(Google)…

BERT (META), RoBERTa,
distiBERT, …

https://github.com/Mooler0410/LLMsPracticalGuide

BERT
• BERT (2019), 340M parameters: unsupervised bi-directional encoder transformer

that predicts a missing word based on surrounding words by computing  
P(xt|x1,…,xt-1,xt+1,…,xN) or the next sentence based on a previous sentence

21

BERT: can be considered as a bidirectional transformer:

randomly mask one or multiple words in the sentence,

the associated context is passed to a softmax classifier
that produce the probability of classifying the correct

missing word

GPT
• GPT is an unidirectional, autoregressive model, approach at the core of most influential

LLMs

• it works by predicting the next token given a sequence of tokens (so outputs one token at a
time at difference of BART)

• GPT3/3.5/4: latest incarnations: trained on a huge Internet text datasets (~600 GB for
GPT3), and scaled up in terms of parameters wrt older version (GPT4: 8x220b pars = 1.76t
pars)

• most impressive feature: it’s a meta-learner, eg it has learned to learn, you can ask it in
natural language to perform a new task and it “understands” what it has to do, mimicking
how humans would (of course in much more rudimental way)

• very popular variant: ChatGPT, smaller version specifically designed for chatbot
applications (eg. to generate natural-sounding responses in conversations. Trained on a
large dataset of conversational text, that allows it to insert appropriate context-specific
responses in conversations, making it more effective at maintaining a coherent conversation

• one of the reasons behind ChatGPT’s impressive performance is its training  
technique: reinforcement learning from human feedback (RLHF)

22

RLHF
• reinforcement learning from human feedback consists in three

phases:

1. pre-train the LLM model with self-supervision (ex. fine-tuning of
GPT3.5)

2. create a reward model for the RL system: train a second model
(based on a LLM model) that takes in the text generated by the
main model and produces a quality score (labels are produced
by humans)

3. create a reinforcement learning loop. A copy of the main LLM
becomes the RL agent. In each training episode, the LLM takes
several prompts from a training dataset and generates text. Its
output is then passed to the reward model, which provides a
score that evaluates its alignment with human preferences. The
LLM is then updated to create outputs that score higher on the
reward model

23

VISION TRANSFORMER
• the very same philosophy of the transformer architecture can be applied to vision, signal analysis, point-cloud analysis, etc.

tasks

• Vision Transformer (ViT): proposed in 2021 by A. Dosovitsky et al. in arXiv:2010.11929

• Simple idea:

• split the images into patches

• vectorise the patches into flat vectors

• add positional encodings vectors to preserve  
patch positions in the original image

• feed the embedding to a transformer  
encoder tailored for a classification task

24

https://arxiv.org/abs/2010.11929

IMAGE PATCHING AND VECTORISATION
• patches can overlap or not (the original paper uses not overlapping patches)

25

• ViT has much less image-specific inductive bias than CNNs

• in CNNs, locality, two-dimensional neighbourhood structure, and translation equivariance, are baked into each layer
throughout the whole model

• in ViT, only MLP layers are local and translationally equivariant, while the self-attention layers are global. The 2D
neighborhood structure is only used when cutting the image into patches while the position embeddings is only 1D and
the 2D spatial relations between the patches have to be learned. Consequently, ViTs require more data for pretraining
to acquire useful "priors" from the training data

d × d × cD × D × c

d2c

LIN
EAR +

positional

embedding

1 2 3

4 5 6

7 8 9

TRAN
SFO

RM
ER

SEGMENTATION WITH ViT
• SAM: Segment Anything by Meta

26

a promptable segmentation system with zero-shot generalisation to unfamiliar objects and images (eg w/o fine-
tuning/retraining)

- image encoder (based on pre-trained ViT) + prompt encoder (Transformer) + mask decoder (Transformer) system

(arXiv:2304.02643)

• UNetr (and Swin UNetr): algorithm by NVIDIA
(H. Hatamizadeh et al.: UNetr)

it is basically a mix between a 3D ViT and an UNet architecture

- the transformer encoder learns sequence representations of the input volume

- the encoder is directly connected to a decoder via skip connections at different

resolutions like a U-Net to compute the final semantic segmentation output

https://arxiv.org/pdf/2304.02643.pdf
https://openaccess.thecvf.com/content/WACV2022/papers/Hatamizadeh_UNETR_Transformers_for_3D_Medical_Image_Segmentation_WACV_2022_paper.pdf

MULTI-MODALITY TRANSFORMERS

27credits: S. Scardapane

KEEP IN TOUCH …

28

This activity is partially supported by PNRR MUR project
PE0000013-FAIR and by ICSC – Centro Nazionale di Ricerca in
High Performance Computing, Big Data and Quantum
Computing, funded by European Union – NextGenerationEU

https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://twitter.com/StefanoG
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
https://www.phys.uniroma1.it/fisica/dove-siamo
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
mailto:stefano.giagu%20%5BAT%5D%20uniroma1.it
https://orcid.org/0000-0001-9192-3537

