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The goal: Precision Medicine

Precision medicine promises improved health by
accounting for individual variability in genes,
environment, and lifestyle.

Precision medicine will continue to transform
healthcare in the coming decade as it expands in
key areas:

huge cohorts,

artificial intelligence (Al),

routine clinical genomics,

phenomics and environment,

returning value across diverse populations.

[Denny and Collins, Precision medicine in 2030—seven ways
to transform healthcare. Cell 2021;184:1415-9.
https://doi.org/10.1016/j.cell.2021.01.015.]
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Old-fashion rule-based automated decision systems
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2) Image filtering
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The CAD scheme takes approximately 13 min to analyse
an 8 x 10cm region of a mammogram on a DEC VAX
3500 computer. Preliminary results indicate that a full
mammogram can be analysed in less than 40 s on an IBM
(RISC 6000) Powerstation 560.
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3) Decisional systems based on the
codification of a series of rules

Dataset: 78 mammograms
Performance:

85% sensitivity @ 2 false positive (FP)
detection per mammogram

[Chan HP et al., “Image feature analysis and
computer-aided diagnosis in digital radiography.
1. Automated detection of microcalcifications in
mammography,” Med. Phys. 14, 538-548, 1987]
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Machine Learning (ML) models
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Radiomics and Machine Learning (ML)

Radiomics
eXtraCting quantitative features from medical images Gillies, R. J., Kinahan, P. E. & Hricak, H. Radiomics: Images Are More than Pictures,
They Are Data. Radliology 278, 563-577 (2015).
I. Image patients [I. Identify ROI [Il. Render in 3D IV. Extract Features IV. Data Integration
Data Mining
Model Building
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Habitats

Radiomics and Al, in particular ML and DL, allow us to develop predictive models of patients’ diagnosis,
prognosis, prediction of treatment efficacy or any other outcome of interest
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Convolutional Neural Networks (CNN) M

https://towardsdatascience.com
JAIM

 Deep neural networks are generally better than other ML methods on images
The series of layers between input and output compute relevant features automatically in a series
of stages, just as our brain seems to do.
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Deep learning for image segmentation: U-nets
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The U-net deep learning network design demonstrated superior capabilities in image segmentation in
a large variety of segmentation tasks, including medical images

[Ronneberger, O., Fischer, P, Brox, T.: U-net: Convolutional networks for biomedical image segmentation. Lecture Notes in
Computer Science 9351, 234-241 (2015). DOI 10.1007/978-3-319-24574-4 28]
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Artificial Intelligence (mainly ML and DL) in Medicine M

AV

In medical image analysis a large variety of approaches based on Al can be developed according to different goals,
e.g. image segmentation, image classification, building predictive models based on both images and additional
patient information.

-

Radiomics +

Machine Learning

Image acquisition segmentation feature computation classification /
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Deep Learning
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Al In Medical Image Analysis: performance and impact M

JAIM

Comparison between DL models and health-care professionals (HCP) in the same sample

[14 studies/82, different diseases]:

e a sensitivity of 87.0% with 95% CI [83.0-90.2] for DL models and 86.4% [79.9-91.0] for HCP
e a specificity of 92.5% with 95% CI [85-1-96-4] for DL models and 90.5% [80.6-95.7] for HCP
=» DL models and HCP show equivalent performance

[Liu et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical
imaging: a systematic review and meta-analysis. Lancet Digit Heal 2019;1:271-97]

Radiologists can guide the introduction of Al into healthcare. They will not be replaced by Al, which, in turn will:
e standardize the level of reporting across different clinical centres

e speed up the diagnosis process and allow radiologists to perform more value-added tasks

[Pesapane F, Codari M, Sardanelli F. Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at
the forefront of innovation in medicine. Eur Radiol Exp 2018;2]
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Al In Medical Image Analysis: current limitations M

JAIM

Al algorithms for medical imaging must be effectively evaluated before they are used in clinical practice.
The performance obtained in the R&D stage is difficult to maintain in the clinical use.
=>» Both the generalizability of Al algorithms and the benefits of Al-assisted care relative to conventional care

should be proved
[Park SH, Han K, Jang HY, Park JE, Lee J, Kim DW, et al. Methods for Clinical Evaluation of Artificial Intelligence Algorithms
for Medical Diagnosis. Radiology 2022:1-12]

It is not enough for Al to efficiently detect image abnormalities/pathological conditions. Al imaging studies should

be refined to predict clinically meaningful endpoints, e.g.: lesion malignancy, need for treatment, patient survival.

[Oren O, Gersh BJ, Bhatt DL. Artificial intelligence in medical imaging: switching from radiographic pathological data to
clinically meaningful endpoints. Lancet Digit Heal 2020;2:e486-8.]
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Open issues to address

e Definition of clinically meaningful endpoints:

o A multidisciplinary team is needed to define the

objective and collect suitable data accordingly

e Open technical issues and challenges:

o Limited availability of annotated data
o  Mining data from multiple sources

o  Reliability of Al-based systems

o  Explainability (XAl)
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Limiting factors for ML training: small annotated datasets

e Data annotation by human experts is an extremely time-
consuming task, which typically requires:
o the collection of additional information from other storing systems,
o expertise in segmenting meaningful regions in images,
o specific knowledge to assign class labels.
e Moreover, segmentation of organs or lesions (i.e. voxel-wise
annotation) are affected by inter- and intra-reader variability.

“Reader 1

Y

Reader 2

An important issue in ML model training in medical domains are the small datasets
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companies

> [From Wikimedia Commons]
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Strategies to mitigate the “small data” problem

=» Data augmentation with traditional techniques =» Automated/semi-automated annotation

[Lizzi F et al,
Quantification of
7 pulmonary
; d involvement in COVID-
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[Wang et al,
Annotation-efficient
deep learning for
automatic medical
image segmentation.
Nature
Communications,
12(1), 1-13 (2021)]

:: Filtered low-quality labels = Label correction @ Sample selection @ Data augmentation

=» Data augmentation via synthetic data generation = Transfer learning

(b) Real image Synthetic image [ ] 64% cat
7 . | m- 3 33% dog
[Chlap P et al, A review of - { l ey | I e [Xu et al, Current status and
medical image data mﬂ b 0.1% spoon future trends of clinical
augmentation techniques for (== : diagnoses via image-based
-(ljeep |(7al}’lll\2gdappllllcatlons d Trained Weights Transfer Train from scratch deep learning' TheranostiCS,
ournal of Medical Imaging an 9(25), 7556-7565 (2019)]
Radiation Oncology, 65(5), 545— ;
563 (2021)] l rnne [ | "\ | 64% Normal
Mes=.| =
| k| | ! 0.1% Malignant
ImageNet Database Convolution layers Full connection layers Predicted labels

[Piffer S, Ubaldi L, Tangaro S, Retico A and Talamonti C, Tackling the small data problem in medical image classification with artificial intelligence: a systematic review, under review]
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Transfer learning (TL)

Similar
: Large. annotated . i Small. annotated Small. annotated Small. annotated
Different TL approaches can be s , O O ®
implemented:
Y A\ Y Y
CNN as feature Discriminative Retrain the whole
® CNN as feature extractor Mz deepinende] —_ extractor learning model
All but the last feed-forward layer(s) of the network Ly Transfer Comv Conv Conv
are frozen. The only weights that are trained are those i - o — L Gradual Coay
. . . . unfreezing : :
in the last layers. ! _ > Finetune
Conv Initialization Conv Conv Conv =
ie ;En } Fine tune So::la } Fine tune So::]a.
®  Discriminative learning rates with gradual Holieas SO = c

unfreezing

The first layers of a network typically learn general
features (e.g., lines, circles, colors, etc.). Thus, the
weights in those layers should be changed less than
the weights of the downstream layers which are more 4

Similarity between source and target datasets, and target dataset size matter

specialized in the target task. Fixed feature Similar Fine tune
extractor the model
. . Size of the Small Large .
®  Fine tune all CNN simultaneously target dataset >
None of the weights are frozen. The pretrained Fine tune also Different Fine tune the model
. . . . . | .
network is used as a starting point. appropriate first layers or train from scratch

Similarity between source
and target dataset
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Transfer learning (TL)

Atelectasis | Cardiomegaly Effusion ‘ Nodule | Pneumonia | Pneumothorax

Comparison of three different TL methods, using

DenseNet121, and different training dataset sizes and Traditional ML vs DHL (wand w/o TL) Different TL methods
ernia Chest x-ray 14
d|fferent C|aSSIfIC8tIOn taSkS. Ho — DL with no transfer Ie_arnmg - —e— feature extractor
DL with transfer learing g Fibg Hine all
0.9 4 —— LR on radiomic features 0.9
—a— grad. unfrezing with disc. Ir
ReSU |tSZ 0.8 4 0.81 (orange points are very close to
Q . — p—— ’ green ones)
> e S S

® Traditional ML can perform better that DL for small e =07

datasets; if DL is used, TL performs better. 06 1 m 061 ﬁm

0.5 1 0.5
® Fine-tune-all and gradual-unfreezing methods perform 0 500 1000 1500 2000 0 250 500 750 1000 1250 1500 1750 2000
. . . # training samples raining samples
very similar, and they outperform using DL as feature e S
extractor Lo Chest x-ray 14
—a— CheXpert
T 0.9+ —=— MURA CheXpert: Chest X-ray images

® Features learned may not be as general as currently Similarity o —+— Imagenet MURK: MusculoskelefalRf

believed: between . —— images (elbow, finger, forearm,

. . O 0.7
o TL from models trained on images of the same sourceand 3 hand, humerus, shoulder, and

- /-»T./.—\. -
modality and different anatomical site is equivalent target o Wf wrisy

datasets ImageNet: natural images
to using ImageNet

® TLis useful for small datasets (N < 2000) 0 250 500 750 1000 1250 1500 1750 2000

# training samples

[Romero et al. Targeted transfer learning to improve performance in small medical physics datasets. Medical Physics, 47(12), 6246—6256 (2020)]
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Integration of data from multiple sources

Data modalities |  Opportunities
/'/ ‘\\\/_:\//"7 \
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Data modalities and opportunities for multimodal biomedical Al

The integration of the complementary information

encoded in omics data, electronic health records

(HER), imaging data is expected:

* toincrease the understanding of human health
and disease conditions

* to allow personalized preventive, diagnostic and
therapeutic strategies

UK Biobank (started in 2006) enrolled more than
500k participants to follow for 30 years.

The integration of these very distinct types of data
remains a challenge.

N s aa
sensors | 5 o i /’\\/\ o
\\v /\,/ \\ | ‘/ | Virtual health . . . o
[Acosta et al (2022). Multimodal biomedical Al. Nature Medicine,

Environment \\.:@? /\i—/\\ / coach
2 ' o 28(9), 1773-1784. https://doi.org/10.1038/s41591-022-01981-2]
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Multimodal learning

Data from different modalities should be combined - Multimodal Fusion

@ Freature
B Prediction
* @ Extracted Feature

. M Modality 1

Early fusion: Model . " Modality 2
_ _ L Early fusion M Output
e |tis the simplest approach. Input modalities or features are
concatenated before any processing. (CISIT
IOl

Late fusion:
[

Separate models are trained for each modality and the output Late fusion *
probabilities are combined at the end. It a simple and robust o

approach, but any possible information encoded in the interaction
between data modalities is missing.

1 Model 2

Joint fusion:
o

The representations of the different modalities are co-learned and

combined during the training process. It allows for modality-specific . 7 | |Eeieuel Joint fusion
preprocessing and also capturing the interaction between data

modalities. [!]'_I.]]
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Missing values in multimodal analysis

A high proportion of missing data may affect multimodal data collections. men e o S, bk T Lot oo men  er ma %%, b T Lower o
. . . . . . Caltech 0051457 | 22.9| 107 1 2.56 257| 321132 317005 Caltech 0051457 | 229 107 1 256 257| 321132 317005
SI m ply EXC| Ud | ng patlents Wlth misSI ng data . Caltech 0051458 | 392 93 1 265 Nm‘ 266419| 266456 Caltech 0051458 | 39.2 93 1| 2es 263 266419 266456
Caltech 0051459 | 22.8| 106| 1 271 273| 307157 310540 Caltech 0051459 | 228 106 1 271 273 307157 810540

d t h d t t d I ty Caltech 0051461 | 37.7| 99 1 259 261) 263033 269417 Caltech 0051461 | 37.7| 99 1 2.59 2.61| 263933 269417

o reduces € datase Imensionall Caltech 0051464 | 209 101 1 2.76 278 381572] 394085 Caltech 0051464 | 209 101 1 2.76 278 381572 394085

. . Caltech 0051472 | 17.5 125 1 NaN 2.77| 345432] 345834 Caltech 0051472 | 17.5 125 1 2.83 2.77| 345432| 345834

o m ay I ea d tO d se | e Ct on b 1as Caltech 0051474 | 20.9| 100 1 NaN 263 208050 309524 Caltech 0051474 | 209 100 1 262 263 208050 309524

CMU_a 0050654 | 24| 95 1 268 271| 287010 287815 CMU_a_0050654 24 o 1 268 271 287010 287815

CMU_a 0050659 | 27| 109: 4 272 272| 330376| 330325 data CMU_a_0050659 27 100 1 272]  272| as0aze| 330325

CMU_a 0050660 = 25 NaN 4 274 2.74| 270281 284870 | . CMU_a_0050660 25| 115 1 274 274 279281 284870

o ° . CMU_a 0050663 | 21| 101 -1 263 267 202010 206380 IMPULATION |emu a oososes 21 101 1 263) 267 202010 296389

D ata | m p u ta t | O n te C h n | q u es CMU_a 0050664 | 21 109 A 258 258 262753 261800 CMU_a_0050664 21| 100 1 258 258 262753 261800
CMU_a 0050665 | 33| 109 4 255 257| 237432] 237280 CMU_a_0050665 3a| 100 1 255 257| 217432 237280

I f 1 1 g | f th 1 t' g p t f th d t CcMu_a 00s0ses | 31/107| 1 2.50 256 315076 311384 CMU_a_0050666 a1 107 1| 2s0| 256 315076 311384
nrer missing values rrom € existin art o € data. CMU_a 0050668 | 25| NaN - 265 265 NaN| 250074 CMU_a_0050668 25 110 1 265 265 250916 250974

. CMU_b 0050643 | 21| 123 1 265 266 257308 NaN CMU_b_0050643 21 123 1 265 266 257308 256875

o B asiC a p p roac h es: CMU_b_ 0050845 | 20 124 1 258 250 264307 260833 CMU_b_0050645 20 124 1 258 250 264307 260833
R CMU b 0050651 | 39| 116 1 247 245 306868 306173 CMU_b_0050851 3| 116 1 247)  2.45 306868 306173

() F or numerica | fe at ures: KKI_0050814 46| 108) 1 279 281 351150 355034 KKI_0050814 846 108 1 279 281| 351150| 355034 |

KKI_0050815 10.6] 105 1 2.46 262 NaN| 219226 KKI_0050815 1062| 105 1 2.46 262 207923 219226

KKI_0050816 0.73] 119 Rl 2.61 260 271211 275017 KKI_0050816 073 119 1 261 260 271211| 275017

u replaCI ng mIsSI ng va | ues Wlth the mea n/med lan Of the KKI_0050817 0.97| NaN - 261 260 298531 209507 KKI_0050817 097 119 1 261 260 208531 299507

. . . KKI_0050818 118) 98| 1 267 269 277694 286714 KKI_0050818 1170 o8| 1 267 269 277604 286714

non-missin g va | uesin a Cco | umn KKI_0050819 971|101 4 261 262 206509 205511 KKI_0050819 971 101 1 261| 262 208500 295511

R R KKI_0050821 112 114 4 275 275 288554 288993 KKI_0050821 17| 114 1 275| 275 288554 288093

] re p | acln g Wlt h a « O » Or cCon Sta nt Va | ue KKI_0050822 124) 08| 1 2.74 272| 287403 289102 KKI_0050822 1243 o8| 1 274| 272 287408 289102

KKI_0050823 11.4] 120 1 2.86 2.83| 314385 310731 KKI_0050823 1137] 120 1 2.86 2.83| 314385 310731

o  For categorical features:

m replacing missing values with the most frequent values t
within each column
® ML-based approaches (multivariate approach): g s T kNN with k=3
o  kNearest Neighbors classification (k-NN): it looks at the 8 (1,12, 13)
nearest observations in the training sample and imputes the
. . . "., ." f3= an(f3neighbors)
missing value from that of the neighbours "

featurel
[Cismondi et al, Missing data in medical databases: Impute, delete or classify? Artif Intell Med 2013;58:63—72. https://doi.org/10.1016/j.artmed.2013.01.003.

INFN A. Retico - An overview of Machine Learning in Medicine and Medical Physics 20



Reliability of Al systems

e What happens when an Al algorithm trained for a specific
task is executed on “inappropriate input data”?

o  Typically, it provides its prediction!!!

[Yi et al (2022). Can Al distinguish a bone radiograph from photos of flowers or
cars? Evaluation of bone age deep learning model on inappropriate data inputs.
Skeletal Radiology, 51(2), 401-406. https://doi.org/10.1007/s00256-021-03880-y]

Predicted Bone Age: Predicted Bone Age:

Predicted Bone Age:
1 year, 1 month 15 years, 11 months

13 years, 9 months

e To avoid feeding an Al algorithm with a wrong input:

o Image type/quality can be evaluated by another Al Motion-free vs motion corrupted images

algorithm, and possibly discarded if not appropriate

[Fantini et al. (2021). Automatic MR image quality evaluation using a Deep CNN: A reference-free
method to rate motion artifacts in neuroimaging. Computerized Medical Imaging and Graphics,
90, 101897. https://doi.org/10.1016/j.compmedimag.2021.101897]
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The need for Al explainability (XAl)

ML systems
nowadays

The goal is to make them more “transparent”

Future XAl
systems

Al-based Decision Support Systems (DSS) nowadays are almost completely “opaque”

!

Training
Data

ML/DL

Decision
function

DSS output

»
»

Training
Data

| new ML/DL

algorithms

Explainable
Model

Explanation
Interface

The user:

» does not understand the motivation
why a certain output is given

+ does not know whether the DSS
succeeded/failed

» does not know when to trust the
DSS

» does not know why the DSS failed,
thus how it can be improved

The user:

* understands the motivation why a
certain output is given

* knows whether the DSS
succeeded/failed

* knows when to trust the DSS

+ knows why the DSS failed, thus,
how to improve it

20-22 Nov 2023 - Universita di Milano Bicocca
https://indico.cern.ch/event/1312529/
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The Artificial Intelligence in Medicine (AIM) INFEN Project M

intelligence
INFN
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[INFN, CSN5, 2019-2021]

Principal Invest.: A. Retico
Research Units:
Bari (S. Tangaro)
Bologna (D. Remondini)
Cagliari (P. Oliva)
Catania (M. Marrale)
Firenze (C. Talamonti)
Genova (A. Chincarini)
Lab. Naz. Sud (G. Russo)
Milano (C. Lenardi)
Napoli (G. Mettivier)
Pavia (A. Lascialfari)
Pisa (M.E. Fantacci)

Artificial Intelligence to become the next revolution in medical

diagnostics and therapy.

e New image processing and data analysis strategies, including
radiomics approaches, need to be developed and extensively

validated.

(AJM’S objectives\

AIM1: Multicenter data
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o

AIM2: Quantification
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AIM3: Predictive models

ﬂext_AIM’s obje

ctives

WP1 L

Challenge I:
no-so-big data

Cc

N— 7

omputing
resources and SW
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XAl)
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—

Long-standing collaboration with Italian centers (hospitals / IRCCS)
and with international consortia for data sharing

AV
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[INFN, CSN5, 2022-2024]

Principal Invest.: A. Retico

Research Units:
Bari (S. Tangaro)
Bologna (D. Remondini)
Cagliari (P. Oliva)
Catania (M. Marrale)
Ferrara (G. Paterno)
Firenze (C. Talamonti)
Genova (A. Chincarini)
Lab. Naz. Sud (G. Russo)
Milano (C. Lenardi)
Napoli (G. Mettivier)
Pavia (A. Lascialfari)
Padova (A. Zucchetta)
Pisa (M.E. Fantacci)
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The Artificial Intelligence in Medicine (AIM) INFN-CSN5 Project

Researchers from INFN divisions and University Departments collaborate closely with Radiologists, Clinicians
and Medical Physicists in Clinical Centers to develop innovative solutions based on data mining and Al

Clinical partners MAGO7 EU / consortia Scientific associations
[ J . ..
. ° EADC (EU) ° Italian Association of
° IRCCS S. Martino (GE i iv Pi
(CE) ®  Azienda Osp. Univ Pisana (PI) e  EDLBC (EU) Medical Physics (AIFM)
®  IRCCS Stella Maris (P1) e  Azienda Osp. Univ. Careggi (FI) o  ADNI(US)
e  IRCCS Gaslini (GE) o e  Osp. Pediatrico Meyer (Fl) e  ABIDE (EU/US)
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LungQuant: SW tool for lesion detection and structured reporting

[https://www.openaccessrepository.it/record/76937] &

JAIM

ID LESION_TYPE_INDEX BILATERAL_INDEX BASAL_INDEX
A-0037 0,137 0,447 37
Lu ngQuant A-0311 0,198 0,041 61
[Lizzi F et al Quantification of pulmonary involvement in COVID-19 e S.2ed i o
pneumonia by means of a cascade of two U-nets: training and il 0,292 0,351 60
assessment on multiple datasets using different annotation criteria. Veonsolidation/ Viesion o: Ef}”ateff' > 0: basal
IJCARS 2022;17:229-37. doi.org/10.1007/s11548-021-02501-2. 1+ bilatera = 100: apical
e L L e e T e A j
Rl Structured Report
The validation of the LungQuant software output against the qualitative assessment of 14 , Radiologist “
radiologists from 5 University Hospitals (Pisa, Pavia, Firenze, Palermo, Milano) has shown: /'
LSl B Clinical

among the opinions
of radiologists . ==

BasalPredominant

§ —— 2 > information
- apoor agreement ’ ’ \
»

Imaging information

1

1

1

1

1

1

1

1
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7 X : 1
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Type : . I
c s Chest CT exam =

1 - ' =55 k j 0 tesontype 1) :

| oo | .’ ‘ — {2 I

1
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i 0 . 1

X ; e 1

= : 1

1

1

1

=_M

[ ) =

05— ——

e @
Deep Learning-based

- agood correlation
between average
radiologists’ opinions

Bilateral
distribution 0'9

50-75

and the equivalent 2 20 E““ : segmentation software Ritsiratic

software output mee GEENL computstion of Matching algorithm

metrics , qualitative indexes

0-5 GGO-:‘:-" l o - '
o 0.2 O:JLLm'K? 6 o8 1 o 0.2 L::m‘—n,;c?‘) o8 1 Al module
[Chincarini A, Scapicchio C et al A multicenter evaluation of the LungQuant software for lung [Scapicchio C, et al. Integration of a Deep Learning-Based Module for the Quantification of Imaging Features
parenchyma characterization in COVID-19 pneumonia, European Radiology Experimental, into the Filling-in Process of the Radiological Structured Report. Int. Jt. Conf. Biomed. Eng. Syst. Technol.,
https://doi.org/10.1186/s41747-023-00334-z] SCITEPRESS 2023, p. 663—70. https://doi.org/10.5220/0011921900003414.]
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Prediction of COVID-19 severity: the covidcxr hackathon

AV

https://ai4covid-hackathon.it/
* covidexr - Hackathon

Dataset:
~1100 CXR for training
~500 CXR for test

Residual Block

Residual Block

Residual Block

Residual Block

Residual Block

Residual Block

Multi-input DL-based
Al model

Clinical Features:
Age, Temp_C, WBC,
CRP, LDH, D_dimer,
Pa02, sa02, pH,
Sex, Cough,
DifficultyInBreathing.
RespiratoryFailure

The AIM-WG team achieved the 4t place
with a 74% accuracy in predicting patient

prognosis on the hackathon test set

Outcome prediction:
(severe/not severe)

Challenge on chest X-ray and clinical data of patients with COVID-19 pneumonia

Explainability: The grad-CAM technique produced saliency maps, which indicate whether
the classifier is looking at the right parts of the image when assigning a certain class label

Correctly

classified by the

multi-input CNN
GT: mild GT: severe
Al: mild Al: severe

Misclassified by
the multi-input
CNN

o

GT: mild GT: severe |

[Lizzi et al, Fully automated deep learning based system for COVID-19 patient
outcome prediction, Intelligence-based medicine, under review]
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Predictive model to discriminate low-grade vs. high-grade gliomas

Evaluation of the robustness of radiomic features in Multiparametric MRI scans (T1, T1-Gd, T2, FLAIR) of:
* 61 patients with Low-Grade Gliomas (LGG)

e 97 patients with High-Grade Gliomas (HGG

multiparametric MRI and its impact on predictive
value of Al models

Whole Tumor 1 Edema (ED) Tumor Core (TC)

(c)

MinMax
Robust Discretization Training labels
Brainstem settings (Glioma grade)
e g— h—c— Y

: Feature ML Classifier Performance
. . . Imaging Image Tumor d '
The analysis pipeline izati ; Extraction (Random Evaluation (AUC
V' pPIp (MRI) Normalization Segmentation (PyRadiomics) Forest) in 5-fold CV)

N U T

whole tumor 72 intensity features

All MRI ROI 300 texture features
sequences

Image normalization and intensity discretization have an impact on the performance of ML

classifiers based on radiomic features.

Random forest (RF) classification

Intensity Features Texture Features e - .
10 10 - target: LGG vs HGG discrimination Enhancing part B Non-enhancing
. . . of the tumor part of the
- features: MRI-reliable features defined according core (ET) oo
0s ‘ } ) , ‘ , } 53 | to the most appropriate normalization and (NET)
¢ ‘ | g - (| discretization settings. Raw feature Set | MRI-reliable feature
5 [ b Modality (372 Features Set (372 Features)
208 é 08 Conclusions for all modalities) | [Norm_Brainstem]
8 8 - The complementary information of multi- (Bin counts =128)
07! + original 07 Original parametric MRI has to be taken into account ™ 0.73 £0.05 0.69 +0.04
Norm_MinMax «  Norm_MinMax . . .
Norm_Robustscaler . Norm_RobustScaler - The image preprocessing step is relevant for T1-Gd 0.89 + 0.05 0.93 +0.05
« Norm_Brainstem « Norm_Brainstem . . . i - ) -
06 06—, . . , radiomic and ML analysis
6 16 128 512 B 6 128 512 T2 0.76 + 0.08 0.75+0.06
number of intensity discretization levels number of intensity discretization levels
Ubaldi L, Saponaro S, Giuliano A, Talamonti C, Retico A. Deriving quantitative information from multiparametric MRI via T2 FLAIR 0.76 + 0.08 0.76 + 0.06
Radiomics: Evaluation of the robustness and predictive value of radiomic features in the discrimination of low-grade versus high- All sequences 0.88 + 0.08 @ 0@

grade gliomas with machine learning. Phys Medica 2023;107:102538, https://doi.org/10.1016/j.ejmp.2023.102538
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Joint fusion approach to exploit both structural and functional data

Freesurfer

Brain imaging features of ~1400 subjects - — e j
* sMRI - The Freesurfer recon-all pipeline has been implemented to e sach subject I‘:r‘fef;:‘:: eanmaling
extract 221 structural features for each SUbjeCt Feature extraction from structural and functional MRI data

= rs-fMRI - The CPAC processing pipeline for fMRI data has been

=  The Harvard-Oxford atlas has been used, thus generating 103 temporal

series for each subject
=  The functional connectivity matrix has been computed for each subject

SMRI fMRI
implementing the Pearson correlation, thus obtaining 5253 functional N P——
features for each subject ".‘ ‘ . | QQQQ
| Multimodal 1
Joint Fusion

Feature Reduction
Neural Network

e

Feature Reduction
DL model Neural Network

Joint fusion approach:
= The Feature Reduction and the Feature Classification Neural Networks
are trained using a single cost function, thus the most meaningful

features for the classification are extracted Y =)
. . ep . ‘ \,,/'OO\,/
= The model was trained with 150 epochs within a 10-fold cross e T
validation scheme A/ .
N ég; Sesiater
% i s,
Explainability framework: ABIDE ASD | D

= SHpIey Additive exPlanations (SHAP) Autism Brain Imaging Data Exchange Type of model AUC Accuracy

Structural model | 0.66 +0.05 | 0.75+ 0.08
Functional model | 0.76 £0.04 | 0.83 +0.12
Joint fusion model | 0.78 +0.04 | 0.85+0.12

[Saponaro S, Lizzi F, Serra G, Mainas F, Oliva P, Giuliano A, Calderoni S, Retico A. Deep Learning based Joint Fusion approach
to exploit anatomical and functional brain information in Autism Spectrum Disorders, Brain Informatics, under review]
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CE marked Al-based tools available on the market

e A review of 100 CE marked software products was carried out

and made available online

e An extensive bibliographic research on the scientific evidence

of the validity of these products has highlighted that:

o For 64 products out of 100, no evidence of efficacy has been
published in a peer-reviewed journal.

o Only 18 products out of 100 demonstrated a relevant (potential)
clinical impact with studies on: impact on diagnostic thinking, on
the patient's diagnostic/therapeutic pathway or on costs.

Al for Radiology
an implementation guide

www.aiforradiology.com

Products

Find the artificial intelligence based software for radiology that you are looking for.
All products listed are available for the European market (CE marked).

Subspeciality: Modality: CE:® CEclass® FDAclass® Sortby:

Al ~ ALY ALY AL~ Al ~ last modified ~ Search..
220/220 results
Radiobotics CE: Class la - MDR (2)

RBfracture FDA: ®
Fracture detection

Radiobotics

RBfracture is an automated tool to diagnose fractures on x-ray.

Read more

Information source: Vendor

Certification verified: Yes

Subspeciality: MSK
Modality: X-ray

[van Leeuwen, K. G., Schalekamp, S., Rutten, M. J. C. M., van Ginneken, B., 38%
& de Rooij, M. (2021). Artificial intelligence in radiology: 100 commercially
available products and their scientific evidence. European Radiology, 31(6),
3797-3804. https://doi.org/10.1007/s00330-021-07892-z]

Y 4 Neurophet 5
CE: Class lla - MDD
neurophet O
Neurophet AQUA FDA: Classll ()
Brain region segmentation, volume quantification, normative
comparison, report generation, white ...
Neurophet AQUA is an artificial intelligence-based degenerative brain
disease diagnosis assistant software that helps clinicians to diagnose
brain MRI data through quantitative analysis.
o Information source: Vendor
Subspec.\auty Neuro Read more )
Modality: MR Certification verified: Yes
Subspeciality Modality Main functionality
Neuro cT Quantification
37% 33%
Detection
MR
Other/Multiple [ge==""" Ultrasound 3 . enhancement
Cardiac 4% Chest Other/Multiple | \
Abdomen
12% Mammography Triage
MSK
Diagnosis

X-ray
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http://www.aiforradiology.com/

Perspectives and conclusions

Al will continue to improve healthcare to promote precision medicine

e Al-based tools can assist clinicians in: f] F (F D (D 7,\
o  Making automated interpretation of medical images (prioritization A b (=i
of patients, second opinion) '}: ] [_,,‘] } D @U U
o  Speeding up clinical work by automated contouring/annotating/ , X—
reporting findings —| -

o Detecting diseases at an early stage

However:

«... we are far better at collating and storing such data, than we are

at data analysis.»

[Acosta et al (2022). Multimodal biomedical Al. Nature Medicine, 28(9), 1773-1784.
https://doi.org/10.1038/s41591-022-01981-2]

e In the future, Al systems should be:

o  Capable of exploiting multi-modal information
o  Reliable
o  Explainable

e A dedicated multidisciplinary effort is needed to develop
trustworthy Al systems
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Thank you for your kind attention!
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funded by Tuscany Government (POR FSE 2014-2020); PNRR - M4C2 - Partenariato Esteso "FAIR - Future Artificial Intelligence Research" -
Spoke 8, and PNRR - M4C2 - Centro Nazionale "ICSC — Centro Nazionale di Ricerca in High Performance Computing, Big Data and Quantum
Computing" - Spoke 8, funded by the European Commission under the NextGeneration EU programme.
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