
Load balancing using eXpress Data Path

Luca Bassi
luca@argoware.com

September 27, 2023

mailto:luca@argoware.com
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Outline

eBPF and XDP

XDP programs

Direct Server Return

Hashing

Test results

ECMP

A distributed load balancer

Thesis and acknowledgements

2 / 22

eBPF
eBPF permits to run sandboxed programs in the OS kernel, mainly
event-driven.

It’s used to extend the kernel without recompiling it or use
modules.

Safety is provided through static code analysis.

Copyright eBPF.io authors

3 / 22

https://ebpf.io/what-is-ebpf/

eXpress Data Path
eXpress Data Path provides a high performance, programmable
network data path in the Linux kernel.

It provides bare metal packet processing at the lowest point in the
software stack, which makes it ideal for speed.

Copyright IO Visor

4 / 22

https://www.iovisor.org/technology/xdp

eXpress Data Path

The XDP program returns an action code to tell the kernel what
to do with the packet:

▶ XDP PASS

▶ XDP DROP and XDP ABORTED

▶ XDP TX and XDP REDIRECT

5 / 22

First XDP program

This program lets all packets pass to the kernel network stack.

1 #include <linux/bpf.h>

2 #include <bpf/bpf_helpers.h>

3
4 SEC("xdp")

5 int xdp_pass(struct xdp_md *ctx)

6 {

7 return XDP_PASS;

8 }

6 / 22

First XDP program

We can compile it with clang using the -target bpf option, for
example:

clang -g -Wall -Wno-compare-distinct-pointer-types \

-target bpf -O2 -c xdp_pass.c -o xdp_pass.o

And load it with xdp-loader included in the xdp-tools:

sudo xdp-loader load interface_name xdp_pass.o

7 / 22

First XDP program

If we replace XDP_PASS with XDP_DROP, all incoming packets will
be dropped.

This will happen before the kernel network stack, so for example
these packets will be “invisible” also to tcpdump.

Fortunately, we can use xdpdump for debugging XDP programs.

xdpdump -i interface_name --rx-capture entry,exit -x

8 / 22

Maps

Maps are the method used by eBPF programs to store and retrieve
data.

Maps can be accessed from applications in user space via syscalls.

1 struct {

2 __uint(type , BPF_MAP_TYPE_PERCPU_ARRAY);

3 __uint(max_entries , 2);

4 __type(key , __u32);

5 __type(value , long);

6 // __uint(pinning , LIBBPF_PIN_BY_NAME);

7 } count SEC(".maps");

9 / 22

Examining a packet
1 void *data_end = (void *)(long)ctx ->data_end;

2 void *pos = (void *)(long)ctx ->data;

3 struct ethhdr *eth = pos;

4 if (eth + 1 > data_end) {return -1;}

5 __u16 h_proto = eth ->h_proto;

6 pos = eth + 1;

7 __u32 key;

8 if (h_proto == bpf_htons(ETH_P_IP)) {

9 struct iphdr *ip = pos;

10 if (ip + 1 > data_end) {return -1;}

11 __u8 protocol = ip->protocol;

12 if (protocol == IPPROTO_ICMP) {

13 key = 0;

14 long *value = bpf_map_lookup_elem (&count , &key);

15 if (value) {*value += 1;}

16 }

17 } else if (h_proto == bpf_htons(ETH_P_IPV6)) {

18 /* ... */

19 }

20 return XDP_PASS;

10 / 22

Reading a map from user space

1 int fd = bpf_obj_get("/sys/fs/bpf/test/count");

2 if (fd < 0) {

3 printf("Error bpf_obj_get\n");

4 return fd;

5 }

6 int nr_cpus = libbpf_num_possible_cpus ();

7 long sum[] = { 0, 0 };

8 for (__u32 key = 0; key <= 1; ++key) {

9 long values[nr_cpus];

10 if ((bpf_map_lookup_elem(fd, &key , values)) != 0) {

11 printf("Error bpf_map_lookup_elem\n");

12 return -1;

13 }

14 for (int i = 0; i < nr_cpus; ++i) {

15 sum[key] += values[i];

16 }

17 }

18 printf("IPv4: %d\nIPv6: %d\n", sum[0], sum [1]);

11 / 22

Redirecting packets

Redirecting packets, using the XDP_TX (or XDP_REDIRECT) return
code, can be used for implementing a load balancer.

1 __builtin_memcpy(eth ->h_dest , destination_mac ,

2 sizeof(destination_mac));

3 ip->daddr = destination_ip;

4 __builtin_memcpy(eth ->h_source , load_balancer_mac ,

5 sizeof(load_balancer_mac));

6 ip->saddr = load_balancer_ip;

7 ip->check = iph_csum(ip);

8 return XDP_TX;

12 / 22

Direct Server Return

We can use direct routing to
have outbound traffic served
directly from backend servers.
All the backend servers and the
load balancer need to use the
same virtual IP.
The backend servers must not
announce the virtual IP,
otherwise some packets may go
directly to the server, bypassing
the load balancer.

Image by Red Hat / CC BY-SA 3.0

13 / 22

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/5/html/virtual_server_administration/s1-lvs-routing-vsa#s2-lvs-directrouting-VSA
https://creativecommons.org/licenses/by-sa/3.0/

Hashing

We want that all the packets of a specific connection go to the
same backend server.

We can hash some information of the packet and use the resulting
hash to select the backend server.

For example, we can hash: source and destination IPs and ports.

To minimise the number of reassignments in case of adding or
removing a server, we must use a consistent hashing algorithm, for
example rendezvous hashing.

14 / 22

Rendezvous hashing

Rendezvous or highest random weight (HRW) hashing is an
algorithm that allows clients to achieve distributed agreement on a
set of k options (in this case 1 server) out of a possible set of n
options (the backend servers).

The idea is to assign each server a score for each request and
assign that request to the server with the highest score.

You can assign a weight that acts as a multiplier to each server.

If a server is removed, the algorithm will simply select the server
with the second-highest score in cases where the server removed
was the one with the highest score, while the selection will remain
unchanged in other cases.

15 / 22

Test results

100 000 GET requests per second

Latency Without LB LB (MurmurHash3) LB (xxHash)

min 174 µs 205 µs 183 µs
mean 365 µs 410 µs 366 µs
50 285 µs 321 µs 301 µs
90 469 µs 509 µs 424 µs
95 783 µs 832 µs 609 µs
99 1864 µs 2040 µs 1586 µs

Comparison of latency without load balancer, with load balancer using
MurmurHash3 as the hashing function, and with load balancer using
xxHash instead.

16 / 22

Test results

10 requests per second of upload of a 100 MB file

Without LB LB (MurmurHash3) LB (xxHash)

Mean latency 111.712 ms 100.203 ms 108.317 ms

Mean speed 7.83 Gpbs 7.82 Gbps 7.82 Gbps

Max speed 8.11 Gbps 8.08 Gbps 8.13 Gpbs

The mean latency row reports the data from Vegeta, instead the speeds
are obtained with nload.

17 / 22

ECMP

Routers have a feature called Equal-Cost Multi-Path (ECMP)
routing, which is designed to split traffic destined for a single IP
across multiple links of equal cost.

An alternative use of ECMP can come in to play when we want to
shard traffic across multiple servers rather than to the same server
over multiple paths.

Copyright GitHub

18 / 22

https://github.blog/2018-08-08-glb-director-open-source-load-balancer/

A distributed load balancer

From a classic architecture with dedicated load balancers...

Copyright Cloudflare

19 / 22

https://blog.cloudflare.com/unimog-cloudflares-edge-load-balancer/

A distributed load balancer

... to a distributed load balancer

Copyright Cloudflare

20 / 22

https://blog.cloudflare.com/unimog-cloudflares-edge-load-balancer/

A distributed load balancer
In this topology, two servers announce the same IP address with
BGP, while the other two are using static routes.

The router is blissfully unaware that the connections are being
handled in different places.

Network topology created with GNS3
(Luca Bassi, CC BY-SA 4.0)

21 / 22

https://creativecommons.org/licenses/by-sa/4.0/deed.it

Thesis and acknowledgements

My thesis: Bilanciamento del carico per servizi di accesso ai dati a
elevata efficienza utilizzando eXpress Data Path

Thanks to: Renzo Davoli, Francesco Giacomini, Antonio Falabella,
Lorenzo Chiarelli, Diego Michelotto, Carmelo “budda” Pellegrino

... and all the CNAF staff who made this experience unforgettable!

22 / 22

https://amslaurea.unibo.it/29243/
https://amslaurea.unibo.it/29243/

	eBPF and XDP
	XDP programs
	Direct Server Return
	Hashing
	Test results
	ECMP
	A distributed load balancer
	Thesis and acknowledgements

